| dc.contributor.author | Khlud, Veranika | |
| dc.contributor.author | Reshina, Galina | |
| dc.date.accessioned | 2025-11-25T14:50:27Z | |
| dc.date.available | 2025-11-25T14:50:27Z | |
| dc.date.issued | 2025-11-25 | |
| dc.identifier.issn | 0208-6018 | |
| dc.identifier.uri | http://hdl.handle.net/11089/56783 | |
| dc.description.abstract | The purpose of the presented study is to develop a comprehensive research methodology for evaluating the readiness of young professionals in Latvia to work within AI-enhanced human resource (HR) environments. As artificial intelligence is increasingly embedded in recruitment and talent management processes, understanding how prepared youth are to engage with such systems is both timely and essential.The study applies a mixed-methods design, combining quantitative surveys with qualitative semi-structured interviews and focus groups. The survey instrument is structured to assess digital skills, awareness of AI in HR, trust in algorithmic systems, and adaptability. The qualitative component provides contextual insight into perceptions and personal experiences with AI in recruitment. Participant recruitment is supported by a Latvian recruitment agency, which grants access to a relevant and diverse candidate base.Expected findings include identifying distinct readiness profiles among Latvian youth, revealing both areas of competence and significant gaps in knowledge or confidence. Attitudinal differences and inequalities in access to digital resources are also anticipated.The proposed methodology offers a replicable framework for assessing AI readiness at the national level and is intended to guide HR professionals, educators, and policymakers in developing effective strategies to support youth adaptation to AI-driven workplace transformations. | en |
| dc.description.abstract | Celem prezentowanego badania jest opracowanie kompleksowej metodologii badawczej, która pozwoli ocenić gotowość młodych profesjonalistów na Łotwie do funkcjonowania w systemach zarządzania zasobami ludzkimi wspomaganych przez sztuczną inteligencję. Ponieważ sztuczna inteligencja jest coraz częściej wykorzystywana w procesach rekrutacji i zarządzania talentami, zrozumienie stopnia przygotowania młodzieży do korzystania z takich systemów jest obecnie konieczne.W badaniu zastosowano metodę mieszaną, łączącą badania ilościowe z jakościowymi wywiadami częściowo ustrukturyzowanymi i grupami fokusowymi. Narzędzie badawcze zostało skonstruowane tak, aby ocenić kompetencje cyfrowe, świadomość roli odgrywanej przez sztuczną inteligencję w zarządzaniu zasobami ludzkimi, zaufanie do systemów algorytmicznych oraz zdolność adaptacji. Komponent jakościowy zapewnia kontekstowy wgląd w percepcję i osobiste doświadczenia związane z rolą sztucznej inteligencji w rekrutacji. Rekrutację uczestników badania wspiera łotewska agencja rekrutacyjna, która zapewnia dostęp do odpowiedniej i zróżnicowanej bazy kandydatów.Spodziewane wyniki obejmują identyfikację odrębnych profili gotowości łotewskiej młodzieży i ujawniają zarówno obszary kompetencji, jak i istotne luki w wiedzy lub przekonaniu o posiadaniu takich kompetencji. Przewiduje się również odkrycie różnic w postawach i nierówności w dostępie do zasobów cyfrowych.Proponowana metodologia oferuje powtarzalne ramy do oceny gotowości do współpracy ze sztuczną inteligencją na poziomie krajowym i ma na celu pomoc specjalistom w zarządzaniu zasobami ludzkimi, edukatorom i decydentom w opracowywaniu skutecznych strategii wspierających adaptację młodzieży do transformacji miejsc pracy spowodowanych przez sztuczną inteligencję. | pl |
| dc.language.iso | en | |
| dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
| dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Oeconomica;372 | en |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | |
| dc.subject | artificial intelligence | en |
| dc.subject | human resource management | en |
| dc.subject | youth readiness | en |
| dc.subject | mixed-methods | en |
| dc.subject | Latvia | en |
| dc.title | Designing a Research Methodology to Assess Youth Readiness for AI-Driven HR Practices in Latvia | en |
| dc.title.alternative | Opracowanie metodologii badawczej w celu oceny gotowości młodzieży do praktyk HR opartych na sztucznej inteligencji na Łotwie | pl |
| dc.type | Article | |
| dc.page.number | 67-94 | |
| dc.contributor.authorAffiliation | Khlud, Veranika - Baltic International Academy, Riga, Latvia | en |
| dc.contributor.authorAffiliation | Reshina, Galina - Baltic International Academy, Riga, Latvia | en |
| dc.identifier.eissn | 2353-7663 | |
| dc.references | Almalki M., Alkhamis M., Khairallah F., Choukou M. (2025), Perceived artificial intelligence readiness in medical and health sciences education: a survey study of students in Saudi Arabia, “BMC Medical Education”, vol. 25, 439, https://doi.org/10.1186/s12909-025-06995-1 | en |
| dc.references | Arslan A., Cooper C., Khan Z., Golgeci I., Ali I. (2021), Artificial intelligence and human workers interaction at team level: a conceptual assessment of the challenges and potential HRM strategies, “International Journal of Manpower”, vol. 43(1), pp. 75–88, https://doi.org/10.1108/ijm-01-2021-0052 | en |
| dc.references | Bainbridge H.T.J., Lee I. (2014), Mixed methods in HRM research, [in:] K. Sanders, J. Cogin, H.T.J. Bainbridge (eds.), Research Methods for Human Resource Management, Routledge, London, pp. 15–33. | en |
| dc.references | Ben-Gal H. (2023), Artificial intelligence (AI) acceptance in primary care during the coronavirus pandemic: What is the role of patients’ gender, age and health awareness? A two-phase pilot study, “Frontiers in Public Health”, vol. 10, 931225, https://doi.org/10.3389/fpubh.2022.931225 | en |
| dc.references | Bergdahl J., Latikka R., Celuch M., Savolainen I., Mantere E., Savela N., Oksanen A. (2023), Self-determination and attitudes toward artificial intelligence: Cross-national and longitudinal perspectives, “Telematics Informatics”, vol. 82, 102013, https://doi.org/10.1016/j.tele.2023.102013 | en |
| dc.references | Bikse V., Lūsēna-Ezera I., Rivža P., Rivža B. (2021), The Development of Digital Transformation and Relevant Competencies for Employees in the Context of the Impact of the COVID-19 Pandemic in Latvia, “Sustainability”, vol. 13(16), 9233, https://doi.org/10.3390/su13169233 | en |
| dc.references | Braun V., Clarke V. (2006), Using thematic analysis in psychology, “Qualitative Research in Psychology”, vol. 3(2), pp. 77–101, https://doi.org/10.1191/1478088706qp063oa | en |
| dc.references | Brown P., Parker K., Newlyn H. (2024), How young workers can thrive with AI when they have the right skills, https://www.weforum.org/stories/2024/07/how-young-workers-can-thrive-with-ai-when-they-have-the-right-skills/ [accessed: 6.05.2025]. | en |
| dc.references | Budhwar P., Malik A., Thedushika De Silva M., Thevisuthan P. (2022), Artificial intelligence – challenges and opportunities for international HRM: a review and research agenda, “The International Journal of Human Resource Management”, vol. 33(6), pp. 1065–1097, https://doi.org/10.1080/09585192.2022.2035161 | en |
| dc.references | Charlwood A., Guenole N. (2022), Can HR adapt to the paradoxes of artificial intelligence?, “Human Resource Management Journal”, vol. 32(4), pp. 729–742, https://doi.org/10.1111/1748-8583.12433 | en |
| dc.references | Chen Z. (2022), Collaboration among recruiters and artificial intelligence: removing human prejudices in employment, “Cognition, Technology & Work”, vol. 25, pp. 135–149, https://doi.org/10.1007/s10111-022-00716-0 | en |
| dc.references | Chen Z. (2023), Ethics and discrimination in artificial intelligence-enabled recruitment practices, “Humanities and Social Sciences Communications”, vol. 10(1), 567, https://doi.org/10.1057/s41599-023-02079-x | en |
| dc.references | Choung H., Seberger J.S., David P. (2023), When AI is Perceived to Be Fairer than a Human: Understanding Perceptions of Algorithmic Decisions in a Job Application Context, “International Journal of Human–Computer Interaction”, vol. 40(22), pp. 7451–7468, https://doi.org/10.1080/10447318.2023.2266244 | en |
| dc.references | Chun J.S., De Cremer D., Kim Y. (2024), What algorithmic evaluation fails to deliver: respectful treatment and individualized consideration, “Scientific Reports”, vol. 14(1), 25996, https://doi.org/10.1038/s41598-024-76320-1 | en |
| dc.references | Cohen L., Manion L., Morrison K. (2018), Research Methods in Education, Routledge, London, https://doi.org/10.4324/9781315456539 | en |
| dc.references | Creswell J.W. (2014), Research design: Qualitative, quantitative, and mixed methods approaches, Sage Publications, Thousand Oaks. | en |
| dc.references | Creswell J.W., Plano Clark V.L. (2018), Designing and Conducting Mixed Methods Research, Sage Publications, Thousand Oaks, https://books.google.com/books/about/Designing_and_Conducting_Mixed_Methods_R.html?id=eTwmDwAAQBAJ [accessed: 6.05.2025]. | en |
| dc.references | Dai Y., Chai C., Lin P., Jong M., Guo Y., Qin J. (2020), Promoting Students’ Well-Being by Developing Their Readiness for the Artificial Intelligence Age, “Sustainability”, vol. 12(16), 6597, https://doi.org/10.3390/su12166597 | en |
| dc.references | Dalain A., Yamin M. (2025), Examining the Influence of AI-Supporting HR Practices Towards Recruitment Efficiency with the Moderating Effect of Anthropomorphism, “Sustainability”, vol. 17(6), 2658, https://doi.org/10.3390/su17062658 | en |
| dc.references | Dastin J. (2018), Insight – Amazon scraps secret AI recruiting tool that showed bias against women, https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G [accessed: 6.05.2025]. | en |
| dc.references | Deepa R., Sekar S., Malik A., Kumar J., Attri R., Gupta V. (2024), Impact of AI-focussed technologies on social and technical competencies for HR managers – A systematic review and research agenda, “Technological Forecasting and Social Change”, vol. 202, 123301, https://doi.org/10.1016/j.techfore.2024.123301 | en |
| dc.references | Dima J., Gilbert M.-H., Dextras-Gauthier J., Giraud L. (2024), The effects of artificial intelligence on human resource activities and the roles of the human resource triad: opportunities and challenges, “Frontiers in Psychology”, vol. 15, 1360401, https://doi.org/10.3389/fpsyg.2024.1360401 | en |
| dc.references | Drage E., Mackereth K. (2022), Does AI Debias Recruitment? Race, Gender, and AI’s “Eradication of Difference”, “Philosophy & Technology”, vol. 35, 89, https://doi.org/10.1007/s13347-022-00543-1 | en |
| dc.references | Einola K., Khoreva V. (2022), Best friend or broken tool? Exploring the co‐existence of humans and artificial intelligence in the workplace ecosystem, “Human Resource Management”, vol. 62(1), pp. 117–135, https://doi.org/10.1002/hrm.22147 | en |
| dc.references | European Commission (2021), Proposal for a Regulation of the European Parliament and of the Council laying down harmonised rules on Artificial Intelligence (Artificial Intelligence Act), COM(2021) 206 final, Brussels, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206 [accessed: 6.05.2025]. | en |
| dc.references | EY Foundation (2024), Empowering young people in the age of AI: Understanding and addressing digital exclusion in recruitment, https://www.eyfoundation.com/en_uk/news/reports-and-resources [accessed: 6.05.2025]. | en |
| dc.references | França T., Mamede H., Barroso J., Santos V. (2023), Artificial intelligence applied to potential assessment and talent identification in an organisational context, “Heliyon”, vol. 9(4), e14694, https://doi.org/10.1016/j.heliyon.2023.e14694 | en |
| dc.references | Fritts M., Cabrera F. (2021), AI recruitment algorithms and the dehumanization problem, “Ethics and Information Technology”, vol. 23, pp. 791–801, https://doi.org/10.1007/s10676-021-09615-w | en |
| dc.references | Hashid A., Almaqtari F. (2024), The impact of artificial intelligence and Industry 4.0 on transforming accounting and auditing practices, “Journal of Open Innovation: Technology, Market, and Complexity”, vol. 10(1), 100218, https://doi.org/10.1016/j.joitmc.2024.100218 | en |
| dc.references | Holmström J. (2021), From AI to digital transformation: The AI readiness framework, “Business Horizons”, vol. 65(3), pp. 329–339, https://doi.org/10.1016/J.BUSHOR.2021.03.006 | en |
| dc.references | Horodyski P. (2023), Applicants’ perception of artificial intelligence in the recruitment process, “Computers in Human Behavior Reports”, vol. 11, 100303, https://doi.org/10.1016/j.chbr.2023.100303 | en |
| dc.references | Hradecky D., Kennell J., Cai W., Davidson R. (2022), Organizational readiness to adopt artificial intelligence in the exhibition sector in Western Europe, “International Journal of Information Management”, vol. 65, 102497, https://doi.org/10.1016/j.ijinfomgt.2022.102497 | en |
| dc.references | Hunkenschroer A., Luetge C. (2022), Ethics of AI-Enabled Recruiting and Selection: A Review and Research Agenda, “Journal of Business Ethics”, vol. 178, pp. 977–1007, https://doi.org/10.1007/s10551-022-05049-6 | en |
| dc.references | International Labour Organization (2022), Global Employment Trends for Youth 2022: Investing in transforming futures for young people, https://www.ilo.org/publications/major-publications/global-employment-trends-youth-2022-investing-transforming-futures-young [accessed: 6.05.2025]. | en |
| dc.references | Jeffe S. (2024), Employers and Students Are Concerned About Being Ready for an AI Workplace – Where Are Colleges?, https://www.ruffalonl.com/blog/artificial-intelligence/employers-and-students-are-concerned-about-being-ready-for-an-ai-workplace-where-are-colleges/ [accessed: 6.05.2025]. | en |
| dc.references | Jöhnk J., Weißert M., Wyrtki K. (2020), Ready or Not, AI Comes – An Interview Study of Organizational AI Readiness Factors, “Business & Information Systems Engineering”, vol. 63, pp. 5–20, https://doi.org/10.1007/s12599-020-00676-7 | en |
| dc.references | Kalnina D., Nīmante D., Baranova S. (2024), Artificial intelligence for higher education: benefits and challenges for pre-service teachers, “Frontiers in Education”, vol. 9, 1501819, https://doi.org/10.3389/feduc.2024.1501819 | en |
| dc.references | Karaca O., Çalışkan S., Demir K. (2021), Medical artificial intelligence readiness scale for medical students (MAIRS-MS) – development, validity and reliability study, “BMC Medical Education”, vol. 21, 112, https://doi.org/10.1186/s12909-021-02546-6 | en |
| dc.references | Khajeali N., Kohan N., Rezaei S., Saberi A. (2025), Psychometric assessment of the Persian translated version of the “medical artificial intelligence readiness scale for medical students”, “PLOS One”, vol. 20(5), e0323543, https://doi.org/10.1371/journal.pone.0323543 | en |
| dc.references | Köchling A., Wehner M.C. (2020), Discriminated by an algorithm: a systematic review of discrimination and fairness by algorithmic decision-making in the context of HR recruitment and HR development, “Business Research”, vol. 13(3), pp. 795–848, https://doi.org/10.1007/s40685-020-00134-w | en |
| dc.references | Kotp M., Ismail H., Basyouny H., Aly M., Hendy A., Nashwan A., Hendy A., Elmoaty A. (2025), Empowering nurse leaders: readiness for AI integration and the perceived benefits of predictive analytics, “BMC Nursing”, vol. 24, 56, https://doi.org/10.1186/s12912-024-02653-x | en |
| dc.references | Kshetri N. (2021), Evolving uses of artificial intelligence in human resource management in emerging economies in the global South: some preliminary evidence, “Management Research Review”, vol. 44(7), pp. 970–990, https://doi.org/10.1108/MRR-03-2020-0168 | en |
| dc.references | Malik A., Budhwar P., Mohan H., Srikanth N.R. (2022), Employee experience – the missing link for engaging employees: Insights from an MNE’s AI‐based HR ecosystem, “Human Resource Management”, vol. 62(1), pp. 97–115, https://doi.org/10.1002/hrm.22133 | en |
| dc.references | Malik A., Budhwar P., Patel C., Srikanth N.R. (2020), May the bots be with you! Delivering HR cost-effectiveness and individualised employee experiences in an MNE, “The International Journal of Human Resource Management”, vol. 33(6), pp. 1148–1178, https://doi.org/10.1080/09585192.2020.1859582 | en |
| dc.references | Murugesan U., Subramanian P., Srivastava S., Dwivedi A. (2023), A study of Artificial Intelligence impacts on Human Resource Digitalization in Industry 4.0, “Decision Analytics Journal”, vol. 7, 100249, https://doi.org/10.1016/j.dajour.2023.100249 | en |
| dc.references | Mykhailenko O., Blayone T., Ušča S., Kvasovskyi O., Desyatnyuk O. (2020), Optimism, interest and gender equality: comparing attitudes of university students in Latvia and Ukraine toward IT learning and work, “Compare: A Journal of Comparative and International Education”, vol. 52(6), pp. 895–913, https://doi.org/10.1080/03057925.2020.1843999 | en |
| dc.references | Nasution M., Elveny M., Pamučar D., Popovic M., Gušavac B. (2024), Uncovering the Hidden Insights of the Government AI Readiness Index: Application of Fuzzy LMAW and Schweizer-Sklar Weighted Framework, “Decision Making: Applications in Management and Engineering”, vol. 7(2), pp. 443–468, https://doi.org/10.31181/dmame7220241221 | en |
| dc.references | Ng D., Wu W., Leung J., Chiu T., Chu S. (2023), Design and validation of the AI literacy questionnaire: The affective, behavioural, cognitive and ethical approach, “British Journal of Educational Technology”, vol. 55(3), pp. 1082–1104, https://doi.org/10.1111/bjet.13411 | en |
| dc.references | Palinkas L., Horwitz S., Green C., Wisdom J., Duan N., Hoagwood K. (2015), Purposeful Sampling for Qualitative Data Collection and Analysis in Mixed Method Implementation Research, “Administration and Policy in Mental Health and Mental Health Services Research”, vol. 42, pp. 533–544, https://doi.org/10.1007/s10488-013-0528-y | en |
| dc.references | Pereira V., Hadjielias E., Christofi M., Vrontis D. (2023), A systematic literature review on the impact of artificial intelligence on workplace outcomes: A multi-process perspective, “Human Resource Management Review”, vol. 33(1), 100857, https://doi.org/10.1016/j.hrmr.2021.100857 | en |
| dc.references | Prikshat V., Islam M., Patel P., Malik A., Budhwar P., Gupta S. (2023), AI-Augmented HRM: Literature review and a proposed multilevel framework for future research, “Technological Forecasting and Social Change”, vol. 193, 122645, https://doi.org/10.1016/j.techfore.2023.122645 | en |
| dc.references | Raghavan M., Barocas S., Kleinberg J., Levy K. (2020), Mitigating bias in algorithmic hiring: evaluating claims and practices, [in:] FAT* ‘20: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Association for Computing Machinery, New York, pp. 469–481, https://doi.org/10.1145/3351095.3372828 | en |
| dc.references | Rahman A., Raj A., Tomy P., Hameed M. (2024), A comprehensive bibliometric and content analysis of artificial intelligence in language learning: tracing between the years 2017 and 2023, “Artificial Intelligence Review”, vol. 57, 107, https://doi.org/10.1007/s10462-023-10643-9 | en |
| dc.references | Rigotti C., Fosch-Villaronga E. (2024), Fairness, AI & recruitment, “Computer Law & Security Review”, vol. 53, 105966, https://doi.org/10.1016/j.clsr.2024.105966 | en |
| dc.references | Rožman M., Oreški D., Tominc P. (2022), Integrating artificial intelligence into a talent management model to increase work engagement and performance, “Frontiers in Psychology”, vol. 13, 1014434, https://doi.org/10.3389/fpsyg.2022.1014434 | en |
| dc.references | Rubin A. (2025), Gen Z is still anxiously using AI: Poll, https://www.axios.com/2025/04/08/gen-z-artificial-intelligence-gallup-feelings [accessed: 6.05.2025]. | en |
| dc.references | Solyst J., Yang E., Xie S., Ogan A., Hammer J., Eslami M. (2023), The Potential of Diverse Youth as Stakeholders in Identifying and Mitigating Algorithmic Bias for a Future of Fairer AI, [in:] J. Nichols (ed.), Proceedings of the ACM on Human-Computer Interaction, vol. 7, Association for Computing Machinery, New York, pp. 1–27, https://doi.org/10.1145/3610213 | en |
| dc.references | Tambe P., Cappelli P., Yakubovich V. (2019), Artificial Intelligence in Human Resources Management: Challenges and a Path Forward, “California Management Review”, vol. 61(4), pp. 15–42, https://doi.org/10.1177/0008125619867910 | en |
| dc.references | Teddlie C., Yu F. (2016), WITHDRAWN – Mixed Methods Sampling: A Typology With Examples, “Journal of Mixed Methods Research”, vol. 1, pp. 77–100, https://doi.org/10.1177/2345678906292430 | en |
| dc.references | United Nations (2023), United Nations – World Youth Report (WYR), https://www.un.org/development/desa/youth/world-youth-report.html [accessed: 6.05.2025]. | en |
| dc.references | Upadhyay A.K., Khandelwal K. (2018), Applying artificial intelligence: implications for recruitment, “Strategic HR Review”, vol. 17(5), pp. 255–258, https://doi.org/10.1108/SHR-07-2018-0051 | en |
| dc.references | Uren V., Edwards J. (2023), Technology readiness and the organizational journey towards AI adoption: An empirical study, “International Journal of Information Management”, vol. 68, 102588, https://doi.org/10.1016/j.ijinfomgt.2022.102588 | en |
| dc.contributor.authorEmail | Khlud, Veranika - veranikakhlud@gmail.com | |
| dc.contributor.authorEmail | Reshina, Galina - reshinaganna@inbox.lv | |
| dc.identifier.doi | 10.18778/0208-6018.372.04 | |
| dc.relation.volume | 3 | |