Pokaż uproszczony rekord

dc.contributor.authorKhlud, Veranika
dc.contributor.authorReshina, Galina
dc.date.accessioned2025-11-25T14:50:27Z
dc.date.available2025-11-25T14:50:27Z
dc.date.issued2025-11-25
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/56783
dc.description.abstractThe purpose of the presented study is to develop a comprehensive research methodology for evaluating the readiness of young professionals in Latvia to work within AI-enhanced human resource (HR) environments. As artificial intelligence is increasingly embedded in recruitment and talent management processes, understanding how prepared youth are to engage with such systems is both timely and essential.The study applies a mixed-methods design, combining quantitative surveys with qualitative semi-structured interviews and focus groups. The survey instrument is structured to assess digital skills, awareness of AI in HR, trust in algorithmic systems, and adaptability. The qualitative component provides contextual insight into perceptions and personal experiences with AI in recruitment. Participant recruitment is supported by a Latvian recruitment agency, which grants access to a relevant and diverse candidate base.Expected findings include identifying distinct readiness profiles among Latvian youth, revealing both areas of competence and significant gaps in knowledge or confidence. Attitudinal differences and inequalities in access to digital resources are also anticipated.The proposed methodology offers a replicable framework for assessing AI readiness at the national level and is intended to guide HR professionals, educators, and policymakers in developing effective strategies to support youth adaptation to AI-driven workplace transformations.en
dc.description.abstractCelem prezentowanego badania jest opracowanie kompleksowej metodologii badawczej, która pozwoli ocenić gotowość młodych profesjonalistów na Łotwie do funkcjonowania w systemach zarządzania zasobami ludzkimi wspomaganych przez sztuczną inteligencję. Ponieważ sztuczna inteligencja jest coraz częściej wykorzystywana w procesach rekrutacji i zarządzania talentami, zrozumienie stopnia przygotowania młodzieży do korzystania z takich systemów jest obecnie konieczne.W badaniu zastosowano metodę mieszaną, łączącą badania ilościowe z jakościowymi wywiadami częściowo ustrukturyzowanymi i grupami fokusowymi. Narzędzie badawcze zostało skonstruowane tak, aby ocenić kompetencje cyfrowe, świadomość roli odgrywanej przez sztuczną inteligencję w zarządzaniu zasobami ludzkimi, zaufanie do systemów algorytmicznych oraz zdolność adaptacji. Komponent jakościowy zapewnia kontekstowy wgląd w percepcję i osobiste doświadczenia związane z rolą sztucznej inteligencji w rekrutacji. Rekrutację uczestników badania wspiera łotewska agencja rekrutacyjna, która zapewnia dostęp do odpowiedniej i zróżnicowanej bazy kandydatów.Spodziewane wyniki obejmują identyfikację odrębnych profili gotowości łotewskiej młodzieży i ujawniają zarówno obszary kompetencji, jak i istotne luki w wiedzy lub przekonaniu o posiadaniu takich kompetencji. Przewiduje się również odkrycie różnic w postawach i nierówności w dostępie do zasobów cyfrowych.Proponowana metodologia oferuje powtarzalne ramy do oceny gotowości do współpracy ze sztuczną inteligencją na poziomie krajowym i ma na celu pomoc specjalistom w zarządzaniu zasobami ludzkimi, edukatorom i decydentom w opracowywaniu skutecznych strategii wspierających adaptację młodzieży do transformacji miejsc pracy spowodowanych przez sztuczną inteligencję.pl
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;372en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectartificial intelligenceen
dc.subjecthuman resource managementen
dc.subjectyouth readinessen
dc.subjectmixed-methodsen
dc.subjectLatviaen
dc.titleDesigning a Research Methodology to Assess Youth Readiness for AI-Driven HR Practices in Latviaen
dc.title.alternativeOpracowanie metodologii badawczej w celu oceny gotowości młodzieży do praktyk HR opartych na sztucznej inteligencji na Łotwiepl
dc.typeArticle
dc.page.number67-94
dc.contributor.authorAffiliationKhlud, Veranika - Baltic International Academy, Riga, Latviaen
dc.contributor.authorAffiliationReshina, Galina - Baltic International Academy, Riga, Latviaen
dc.identifier.eissn2353-7663
dc.referencesAlmalki M., Alkhamis M., Khairallah F., Choukou M. (2025), Perceived artificial intelligence readiness in medical and health sciences education: a survey study of students in Saudi Arabia, “BMC Medical Education”, vol. 25, 439, https://doi.org/10.1186/s12909-025-06995-1en
dc.referencesArslan A., Cooper C., Khan Z., Golgeci I., Ali I. (2021), Artificial intelligence and human workers interaction at team level: a conceptual assessment of the challenges and potential HRM strategies, “International Journal of Manpower”, vol. 43(1), pp. 75–88, https://doi.org/10.1108/ijm-01-2021-0052en
dc.referencesBainbridge H.T.J., Lee I. (2014), Mixed methods in HRM research, [in:] K. Sanders, J. Cogin, H.T.J. Bainbridge (eds.), Research Methods for Human Resource Management, Routledge, London, pp. 15–33.en
dc.referencesBen-Gal H. (2023), Artificial intelligence (AI) acceptance in primary care during the coronavirus pandemic: What is the role of patients’ gender, age and health awareness? A two-phase pilot study, “Frontiers in Public Health”, vol. 10, 931225, https://doi.org/10.3389/fpubh.2022.931225en
dc.referencesBergdahl J., Latikka R., Celuch M., Savolainen I., Mantere E., Savela N., Oksanen A. (2023), Self-determination and attitudes toward artificial intelligence: Cross-national and longitudinal perspectives, “Telematics Informatics”, vol. 82, 102013, https://doi.org/10.1016/j.tele.2023.102013en
dc.referencesBikse V., Lūsēna-Ezera I., Rivža P., Rivža B. (2021), The Development of Digital Transformation and Relevant Competencies for Employees in the Context of the Impact of the COVID-19 Pandemic in Latvia, “Sustainability”, vol. 13(16), 9233, https://doi.org/10.3390/su13169233en
dc.referencesBraun V., Clarke V. (2006), Using thematic analysis in psychology, “Qualitative Research in Psychology”, vol. 3(2), pp. 77–101, https://doi.org/10.1191/1478088706qp063oaen
dc.referencesBrown P., Parker K., Newlyn H. (2024), How young workers can thrive with AI when they have the right skills, https://www.weforum.org/stories/2024/07/how-young-workers-can-thrive-with-ai-when-they-have-the-right-skills/ [accessed: 6.05.2025].en
dc.referencesBudhwar P., Malik A., Thedushika De Silva M., Thevisuthan P. (2022), Artificial intelligence – challenges and opportunities for international HRM: a review and research agenda, “The International Journal of Human Resource Management”, vol. 33(6), pp. 1065–1097, https://doi.org/10.1080/09585192.2022.2035161en
dc.referencesCharlwood A., Guenole N. (2022), Can HR adapt to the paradoxes of artificial intelligence?, “Human Resource Management Journal”, vol. 32(4), pp. 729–742, https://doi.org/10.1111/1748-8583.12433en
dc.referencesChen Z. (2022), Collaboration among recruiters and artificial intelligence: removing human prejudices in employment, “Cognition, Technology & Work”, vol. 25, pp. 135–149, https://doi.org/10.1007/s10111-022-00716-0en
dc.referencesChen Z. (2023), Ethics and discrimination in artificial intelligence-enabled recruitment practices, “Humanities and Social Sciences Communications”, vol. 10(1), 567, https://doi.org/10.1057/s41599-023-02079-xen
dc.referencesChoung H., Seberger J.S., David P. (2023), When AI is Perceived to Be Fairer than a Human: Understanding Perceptions of Algorithmic Decisions in a Job Application Context, “International Journal of Human–Computer Interaction”, vol. 40(22), pp. 7451–7468, https://doi.org/10.1080/10447318.2023.2266244en
dc.referencesChun J.S., De Cremer D., Kim Y. (2024), What algorithmic evaluation fails to deliver: respectful treatment and individualized consideration, “Scientific Reports”, vol. 14(1), 25996, https://doi.org/10.1038/s41598-024-76320-1en
dc.referencesCohen L., Manion L., Morrison K. (2018), Research Methods in Education, Routledge, London, https://doi.org/10.4324/9781315456539en
dc.referencesCreswell J.W. (2014), Research design: Qualitative, quantitative, and mixed methods approaches, Sage Publications, Thousand Oaks.en
dc.referencesCreswell J.W., Plano Clark V.L. (2018), Designing and Conducting Mixed Methods Research, Sage Publications, Thousand Oaks, https://books.google.com/books/about/Designing_and_Conducting_Mixed_Methods_R.html?id=eTwmDwAAQBAJ [accessed: 6.05.2025].en
dc.referencesDai Y., Chai C., Lin P., Jong M., Guo Y., Qin J. (2020), Promoting Students’ Well-Being by Developing Their Readiness for the Artificial Intelligence Age, “Sustainability”, vol. 12(16), 6597, https://doi.org/10.3390/su12166597en
dc.referencesDalain A., Yamin M. (2025), Examining the Influence of AI-Supporting HR Practices Towards Recruitment Efficiency with the Moderating Effect of Anthropomorphism, “Sustainability”, vol. 17(6), 2658, https://doi.org/10.3390/su17062658en
dc.referencesDastin J. (2018), Insight – Amazon scraps secret AI recruiting tool that showed bias against women, https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G [accessed: 6.05.2025].en
dc.referencesDeepa R., Sekar S., Malik A., Kumar J., Attri R., Gupta V. (2024), Impact of AI-focussed technologies on social and technical competencies for HR managers – A systematic review and research agenda, “Technological Forecasting and Social Change”, vol. 202, 123301, https://doi.org/10.1016/j.techfore.2024.123301en
dc.referencesDima J., Gilbert M.-H., Dextras-Gauthier J., Giraud L. (2024), The effects of artificial intelligence on human resource activities and the roles of the human resource triad: opportunities and challenges, “Frontiers in Psychology”, vol. 15, 1360401, https://doi.org/10.3389/fpsyg.2024.1360401en
dc.referencesDrage E., Mackereth K. (2022), Does AI Debias Recruitment? Race, Gender, and AI’s “Eradication of Difference”, “Philosophy & Technology”, vol. 35, 89, https://doi.org/10.1007/s13347-022-00543-1en
dc.referencesEinola K., Khoreva V. (2022), Best friend or broken tool? Exploring the co‐existence of humans and artificial intelligence in the workplace ecosystem, “Human Resource Management”, vol. 62(1), pp. 117–135, https://doi.org/10.1002/hrm.22147en
dc.referencesEuropean Commission (2021), Proposal for a Regulation of the European Parliament and of the Council laying down harmonised rules on Artificial Intelligence (Artificial Intelligence Act), COM(2021) 206 final, Brussels, https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206 [accessed: 6.05.2025].en
dc.referencesEY Foundation (2024), Empowering young people in the age of AI: Understanding and addressing digital exclusion in recruitment, https://www.eyfoundation.com/en_uk/news/reports-and-resources [accessed: 6.05.2025].en
dc.referencesFrança T., Mamede H., Barroso J., Santos V. (2023), Artificial intelligence applied to potential assessment and talent identification in an organisational context, “Heliyon”, vol. 9(4), e14694, https://doi.org/10.1016/j.heliyon.2023.e14694en
dc.referencesFritts M., Cabrera F. (2021), AI recruitment algorithms and the dehumanization problem, “Ethics and Information Technology”, vol. 23, pp. 791–801, https://doi.org/10.1007/s10676-021-09615-wen
dc.referencesHashid A., Almaqtari F. (2024), The impact of artificial intelligence and Industry 4.0 on transforming accounting and auditing practices, “Journal of Open Innovation: Technology, Market, and Complexity”, vol. 10(1), 100218, https://doi.org/10.1016/j.joitmc.2024.100218en
dc.referencesHolmström J. (2021), From AI to digital transformation: The AI readiness framework, “Business Horizons”, vol. 65(3), pp. 329–339, https://doi.org/10.1016/J.BUSHOR.2021.03.006en
dc.referencesHorodyski P. (2023), Applicants’ perception of artificial intelligence in the recruitment process, “Computers in Human Behavior Reports”, vol. 11, 100303, https://doi.org/10.1016/j.chbr.2023.100303en
dc.referencesHradecky D., Kennell J., Cai W., Davidson R. (2022), Organizational readiness to adopt artificial intelligence in the exhibition sector in Western Europe, “International Journal of Information Management”, vol. 65, 102497, https://doi.org/10.1016/j.ijinfomgt.2022.102497en
dc.referencesHunkenschroer A., Luetge C. (2022), Ethics of AI-Enabled Recruiting and Selection: A Review and Research Agenda, “Journal of Business Ethics”, vol. 178, pp. 977–1007, https://doi.org/10.1007/s10551-022-05049-6en
dc.referencesInternational Labour Organization (2022), Global Employment Trends for Youth 2022: Investing in transforming futures for young people, https://www.ilo.org/publications/major-publications/global-employment-trends-youth-2022-investing-transforming-futures-young [accessed: 6.05.2025].en
dc.referencesJeffe S. (2024), Employers and Students Are Concerned About Being Ready for an AI Workplace – Where Are Colleges?, https://www.ruffalonl.com/blog/artificial-intelligence/employers-and-students-are-concerned-about-being-ready-for-an-ai-workplace-where-are-colleges/ [accessed: 6.05.2025].en
dc.referencesJöhnk J., Weißert M., Wyrtki K. (2020), Ready or Not, AI Comes – An Interview Study of Organizational AI Readiness Factors, “Business & Information Systems Engineering”, vol. 63, pp. 5–20, https://doi.org/10.1007/s12599-020-00676-7en
dc.referencesKalnina D., Nīmante D., Baranova S. (2024), Artificial intelligence for higher education: benefits and challenges for pre-service teachers, “Frontiers in Education”, vol. 9, 1501819, https://doi.org/10.3389/feduc.2024.1501819en
dc.referencesKaraca O., Çalışkan S., Demir K. (2021), Medical artificial intelligence readiness scale for medical students (MAIRS-MS) – development, validity and reliability study, “BMC Medical Education”, vol. 21, 112, https://doi.org/10.1186/s12909-021-02546-6en
dc.referencesKhajeali N., Kohan N., Rezaei S., Saberi A. (2025), Psychometric assessment of the Persian translated version of the “medical artificial intelligence readiness scale for medical students”, “PLOS One”, vol. 20(5), e0323543, https://doi.org/10.1371/journal.pone.0323543en
dc.referencesKöchling A., Wehner M.C. (2020), Discriminated by an algorithm: a systematic review of discrimination and fairness by algorithmic decision-making in the context of HR recruitment and HR development, “Business Research”, vol. 13(3), pp. 795–848, https://doi.org/10.1007/s40685-020-00134-wen
dc.referencesKotp M., Ismail H., Basyouny H., Aly M., Hendy A., Nashwan A., Hendy A., Elmoaty A. (2025), Empowering nurse leaders: readiness for AI integration and the perceived benefits of predictive analytics, “BMC Nursing”, vol. 24, 56, https://doi.org/10.1186/s12912-024-02653-xen
dc.referencesKshetri N. (2021), Evolving uses of artificial intelligence in human resource management in emerging economies in the global South: some preliminary evidence, “Management Research Review”, vol. 44(7), pp. 970–990, https://doi.org/10.1108/MRR-03-2020-0168en
dc.referencesMalik A., Budhwar P., Mohan H., Srikanth N.R. (2022), Employee experience – the missing link for engaging employees: Insights from an MNE’s AI‐based HR ecosystem, “Human Resource Management”, vol. 62(1), pp. 97–115, https://doi.org/10.1002/hrm.22133en
dc.referencesMalik A., Budhwar P., Patel C., Srikanth N.R. (2020), May the bots be with you! Delivering HR cost-effectiveness and individualised employee experiences in an MNE, “The International Journal of Human Resource Management”, vol. 33(6), pp. 1148–1178, https://doi.org/10.1080/09585192.2020.1859582en
dc.referencesMurugesan U., Subramanian P., Srivastava S., Dwivedi A. (2023), A study of Artificial Intelligence impacts on Human Resource Digitalization in Industry 4.0, “Decision Analytics Journal”, vol. 7, 100249, https://doi.org/10.1016/j.dajour.2023.100249en
dc.referencesMykhailenko O., Blayone T., Ušča S., Kvasovskyi O., Desyatnyuk O. (2020), Optimism, interest and gender equality: comparing attitudes of university students in Latvia and Ukraine toward IT learning and work, “Compare: A Journal of Comparative and International Education”, vol. 52(6), pp. 895–913, https://doi.org/10.1080/03057925.2020.1843999en
dc.referencesNasution M., Elveny M., Pamučar D., Popovic M., Gušavac B. (2024), Uncovering the Hidden Insights of the Government AI Readiness Index: Application of Fuzzy LMAW and Schweizer-Sklar Weighted Framework, “Decision Making: Applications in Management and Engineering”, vol. 7(2), pp. 443–468, https://doi.org/10.31181/dmame7220241221en
dc.referencesNg D., Wu W., Leung J., Chiu T., Chu S. (2023), Design and validation of the AI literacy questionnaire: The affective, behavioural, cognitive and ethical approach, “British Journal of Educational Technology”, vol. 55(3), pp. 1082–1104, https://doi.org/10.1111/bjet.13411en
dc.referencesPalinkas L., Horwitz S., Green C., Wisdom J., Duan N., Hoagwood K. (2015), Purposeful Sampling for Qualitative Data Collection and Analysis in Mixed Method Implementation Research, “Administration and Policy in Mental Health and Mental Health Services Research”, vol. 42, pp. 533–544, https://doi.org/10.1007/s10488-013-0528-yen
dc.referencesPereira V., Hadjielias E., Christofi M., Vrontis D. (2023), A systematic literature review on the impact of artificial intelligence on workplace outcomes: A multi-process perspective, “Human Resource Management Review”, vol. 33(1), 100857, https://doi.org/10.1016/j.hrmr.2021.100857en
dc.referencesPrikshat V., Islam M., Patel P., Malik A., Budhwar P., Gupta S. (2023), AI-Augmented HRM: Literature review and a proposed multilevel framework for future research, “Technological Forecasting and Social Change”, vol. 193, 122645, https://doi.org/10.1016/j.techfore.2023.122645en
dc.referencesRaghavan M., Barocas S., Kleinberg J., Levy K. (2020), Mitigating bias in algorithmic hiring: evaluating claims and practices, [in:] FAT* ‘20: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Association for Computing Machinery, New York, pp. 469–481, https://doi.org/10.1145/3351095.3372828en
dc.referencesRahman A., Raj A., Tomy P., Hameed M. (2024), A comprehensive bibliometric and content analysis of artificial intelligence in language learning: tracing between the years 2017 and 2023, “Artificial Intelligence Review”, vol. 57, 107, https://doi.org/10.1007/s10462-023-10643-9en
dc.referencesRigotti C., Fosch-Villaronga E. (2024), Fairness, AI & recruitment, “Computer Law & Security Review”, vol. 53, 105966, https://doi.org/10.1016/j.clsr.2024.105966en
dc.referencesRožman M., Oreški D., Tominc P. (2022), Integrating artificial intelligence into a talent management model to increase work engagement and performance, “Frontiers in Psychology”, vol. 13, 1014434, https://doi.org/10.3389/fpsyg.2022.1014434en
dc.referencesRubin A. (2025), Gen Z is still anxiously using AI: Poll, https://www.axios.com/2025/04/08/gen-z-artificial-intelligence-gallup-feelings [accessed: 6.05.2025].en
dc.referencesSolyst J., Yang E., Xie S., Ogan A., Hammer J., Eslami M. (2023), The Potential of Diverse Youth as Stakeholders in Identifying and Mitigating Algorithmic Bias for a Future of Fairer AI, [in:] J. Nichols (ed.), Proceedings of the ACM on Human-Computer Interaction, vol. 7, Association for Computing Machinery, New York, pp. 1–27, https://doi.org/10.1145/3610213en
dc.referencesTambe P., Cappelli P., Yakubovich V. (2019), Artificial Intelligence in Human Resources Management: Challenges and a Path Forward, “California Management Review”, vol. 61(4), pp. 15–42, https://doi.org/10.1177/0008125619867910en
dc.referencesTeddlie C., Yu F. (2016), WITHDRAWN – Mixed Methods Sampling: A Typology With Examples, “Journal of Mixed Methods Research”, vol. 1, pp. 77–100, https://doi.org/10.1177/2345678906292430en
dc.referencesUnited Nations (2023), United Nations – World Youth Report (WYR), https://www.un.org/development/desa/youth/world-youth-report.html [accessed: 6.05.2025].en
dc.referencesUpadhyay A.K., Khandelwal K. (2018), Applying artificial intelligence: implications for recruitment, “Strategic HR Review”, vol. 17(5), pp. 255–258, https://doi.org/10.1108/SHR-07-2018-0051en
dc.referencesUren V., Edwards J. (2023), Technology readiness and the organizational journey towards AI adoption: An empirical study, “International Journal of Information Management”, vol. 68, 102588, https://doi.org/10.1016/j.ijinfomgt.2022.102588en
dc.contributor.authorEmailKhlud, Veranika - veranikakhlud@gmail.com
dc.contributor.authorEmailReshina, Galina - reshinaganna@inbox.lv
dc.identifier.doi10.18778/0208-6018.372.04
dc.relation.volume3


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by/4.0