Show simple item record

dc.contributor.authorGraczyk, Małgorzata
dc.contributor.authorCeranka, Bronisław
dc.date.accessioned2022-03-24T12:11:51Z
dc.date.available2022-03-24T12:11:51Z
dc.date.issued2019-09-30
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/41287
dc.description.abstractThe issues concerning optimal estimation of unknown parameters in the model of chemical balance weighing designs with negative correlated errors are considered. The necessary and sufficient conditions determining the regular D‑optimal design and some new construction methods are presented. They are based on the incidence matrices of balanced incomplete block designs and balanced bipartite weighing designs. en
dc.description.abstractW artykule rozważa się problematykę dotyczącą istnienia regularnego D‑optymalnego chemicznego układu wagowego przy założeniu, że błędy pomiarów są ujemnie skorelowane i mają takie same wariancje. Przedstawiono warunki konieczne i dostateczne, wyznaczające układ regularnie D‑optymalny oraz podano nowe metody konstrukcji. Są one oparte na macierzach incydencji układów zrównoważonych o blokach niekompletnych oraz dwudzielnych układów bloków.pl
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;344en
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subjectbalanced bipartite weighing designen
dc.subjectbalanced incomplete block designen
dc.subjectchemical balance weighing designen
dc.subjectoptimal designen
dc.subjectdwudzielny układ blokówpl
dc.subjectchemiczny układ wagowypl
dc.subjectukład optymalnypl
dc.subjectukład zrównoważony o blokach niekompletnychpl
dc.titleA Regular D‑optimal Weighing Design with Negative Correlations of Errorsen
dc.title.alternativeRegularny D‑optymalny układ wagowy z ujemnie skorelowanymi błędamipl
dc.typeArticle
dc.page.number7-16
dc.contributor.authorAffiliationGraczyk, Małgorzata - Poznań University of Life Sciences, Faculty of Agronomy and Bioengineering Department of Mathematical and Statistical Methodsen
dc.contributor.authorAffiliationCeranka, Bronisław - Poznań University of Life Sciences, Faculty of Agronomy and Bioengineering Department of Mathematical and Statistical Methodsen
dc.identifier.eissn2353-7663
dc.referencesBanerjee K. S. (1975), Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics, Marcel Dekker Inc., New York.en
dc.referencesCeranka B., Graczyk M. (2014a), On certain A‑optimal biased spring balance weighing designs, “Statistics in Transition New Series”, no. 15, pp. 317–326.en
dc.referencesCeranka B., Graczyk M. (2014b), The problem of D‑optimality in some experimental designs, “International Journal of Mathematics and Computer Application Research”, no. 4, pp. 11–18.en
dc.referencesCeranka B., Graczyk M. (2015), D‑optimal designs with negative correlated errors based on ternary designs: construction, “Colloquium Biometricum”, no. 45, pp. 35–45.en
dc.referencesCeranka B., Graczyk M. (2016), About some properties and constructions of experimental designs, “Acta Universitatis Lodziensis. Folia Oeconomica”, no. 3(322), pp. 73–85.en
dc.referencesCeranka B., Graczyk M. (2018), Regular D‑optimal weighing designs with non‑negative correlations of errors constructed from some block designs, “Colloquium Biometricum”, no. 48, pp. 1–17.en
dc.referencesHuang C. (1976), Balanced bipartite weighing designs, “Journal of Combinatorial Theory (A)”, no. 21, pp. 20–34.en
dc.referencesJacroux M., Wong C. S., Masaro J. C. (1983), On the optimality of chemical balance weighing design, “Journal of Statistical Planning and Inference”, no. 8, pp. 213–240.en
dc.referencesMasaro J., Wong C. S. (2008a), Robustness of A‑optimal designs, “Linear Algebra and its Applications”, no. 429, pp. 1392–1408.en
dc.referencesMasaro J., Wong C. S. (2008b), D‑optimal designs for correlated random errors, “Journal of Statistical Planning and Inference”, no. 130, pp. 4093–4106.en
dc.referencesRaghavarao D. (1971), Constructions and combinatorial problems in design of experiment, John Wiley and Sons, New York.en
dc.referencesRaghavarao D., Padgett L. V. (2005), Block Designs, Analysis, Combinatorics and Applications, Series of Applied Mathematics 17, Word Scientific Publishing Co. Pte. Ltd., Singapore.en
dc.referencesShah K. R., Sinha B. K. (1989), Theory of Optimal Designs, Springer‑Verlag, Berlin.en
dc.contributor.authorEmailGraczyk, Małgorzata - malgorzata.graczyk@up.poznan.pl
dc.contributor.authorEmailCeranka, Bronisław - bronislaw.ceranka@up.poznan.pl
dc.identifier.doi10.18778/0208-6018.344.01
dc.relation.volume5


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/3.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/3.0/