dc.contributor.author | Sakowski, Sebastian | |
dc.contributor.author | Tahir, Daniah | |
dc.contributor.author | Ingemar, Kaj | |
dc.contributor.author | Bartoszek, Krzysztof | |
dc.contributor.author | Majchrzak, Marta | |
dc.contributor.author | Parniewski, Paweł | |
dc.date.accessioned | 2021-10-15T08:36:39Z | |
dc.date.available | 2021-10-15T08:36:39Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 1730-2668 | |
dc.identifier.uri | http://hdl.handle.net/11089/39394 | |
dc.description | Subject classification: 60B12; 60J85 | pl_PL |
dc.description.abstract | We apply multitype, continuous time, Markov branching models to study pathogenicity in E. coli, a bacterium belonging to the genus Escherichia. First, we examine briefly, the properties of multitype branching processes and we also survey some fundamental limit theorems regarding the behavior of such models under various conditions. These theorems are then applied to discrete, state dependent models, in order to analyze pathogenicity in a published clinical data set consisting of 251 strains of E. coli. We use well established methods, incorporating maximum likelihood techniques, to estimate speciation rates as well as the rates of transition between different states of the models. From the analysis, we not only derive new results, but we also verify some preexisting notions about virulent behavior in bacterial strains. | pl_PL |
dc.description.abstract | W celu zbadania patogenności szczepów E. coli, bakterii z rodzaju
Escherichia, użyto wielorodzajowego markowskiego procesu gałązkowego z czasem
ciągłym. W pierwszej kolejności zrobiono przegląd własności wykorzystywanego procesu
wraz z najważniejszymi wynikami granicznymi opisującymi zachowanie procesu
przy różnych założeniach. Następnie przyjęto konkretny model, w którym rozgałęzienia są zależne od stanu oraz zastosowano go do badania patogenności w zestawie 251 szczepów E. coli pochodzących z II Centralnego Szpitala Klinicznego Wojskowej
Akademii Medycznej. Parametry modelu, tempa narodzin oraz mutacji, zostały
uzyskane metodą największej wiarygodności. Przedstawiona w artykule analiza potwierdza
znane własności patogenności bakterii oraz sugeruje nowe ścieżki pracy
badawczej. | pl_PL |
dc.description.sponsorship | KB was supported by Vetenskapsrådets grant no. 2017-04951. MM and PP were partially supported by IMB PAS. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Polskie Towarzystwo Matematyczne | pl_PL |
dc.relation.ispartofseries | Mathematica Applicanda;48 | |
dc.rights | Uznanie autorstwa-Na tych samych warunkach 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-sa/4.0/ | * |
dc.subject | Markov models | pl_PL |
dc.subject | branching processes | pl_PL |
dc.subject | limit theorems | pl_PL |
dc.subject | virulence factors | pl_PL |
dc.subject | E. coli strains | pl_PL |
dc.subject | model markowski | pl_PL |
dc.subject | czynniki patogenności | pl_PL |
dc.subject | proces gałązkowy | pl_PL |
dc.subject | szczepy E. coli | pl_PL |
dc.subject | twierdzenia graniczne | pl_PL |
dc.title | Using multitype branching models to analyze bacterial pathogenicity | pl_PL |
dc.title.alternative | Zastosowanie wielorodzajowego procesu gałązkowego do analizy patogenności bakterii | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 59-86 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Matematyki i Informatyki | pl_PL |
dc.identifier.eissn | 2299-4009 | |
dc.references | K. Arbuckle and M. P. Speed, Antipredator defenses predict diversification rates, PNAS, 112, 13597–13602 (2015). doi: 10.1073/pnas.1509811112 | pl_PL |
dc.references | K. B. Athreya, Some results on multitype continuous time Markov branching processes, Ann. Math. Stat. 39, 347–357 (1968). doi: 10.1214/aoms/1177698395 | pl_PL |
dc.references | K. B. Athreya and P. E. Ney, Branching Processes, Dover Publications Inc. New York, 1972. | pl_PL |
dc.references | K. Bartoszek, M. Majchrzak, S. Sakowski, Kubiak–Szeligowska A. B., I. Kaj, P. Parniewski, Predicting pathogenicity behavior in Escherichia coli population through a state dependent model and TRS profiling, PLOS Comput. Biol. 14, e1005931 (2018). doi: 10.1371/journal.pcbi.1005931 | pl_PL |
dc.references | S. L. Chen, M. Wu, J. P. Henderson, T. M. Hooton, M. E. Hibbing, S. J. Hultgren, J. I. Gordon, Genomic diversity and fitness of E. coli strains recovered from the intestinal and urinary tracts of women with recurrent urinary tract infection, Sci. Transl. Med. 5, 184ra60 (2013). doi: 10.1126/scitranslmed.3005497 | pl_PL |
dc.references | A. S. Cross, What is a virulence factor? Crit. Care. 12, 196 (2008). doi: 10.1186/cc7127 R. G. FitzJohn, Diversitree: comparative phylogenetic analyses of diversification in R, Methods Ecol. Evol. 3, 1084–1092 (2012). doi: 10.1111/j.2041-210X.2012.00234.x | pl_PL |
dc.references | E. E. Goldberg, L. T. Lancaster, R. H. Ree, Phylogenetic inference of reciprocal effects between geographic range evolution and diversification, Syst. Biol. 60, 451–465 (2011). doi: 10.1093/sysbio/syr046 | pl_PL |
dc.references | S. Janson, Functional limit theorems for multitype branching processes and generalized Pólya urns, Stoch. Proc. Appl. 110, 177–245 (2004). doi: 10.1016/j.spa.2003.12.002 | pl_PL |
dc.references | R. A. Johnson and D. W. Wichern, Applied multivariate statistical analysis, Pearson Education Inc. New Jersey, 2007. | pl_PL |
dc.references | I. Jorgensen, P. C. Seed, How to Make It in the Urinary Tract: A Tutorial by Escherichia coli, PLoS Pathog. 8, e1002907 (2012). doi: 10.1371/journal.ppat.1002907 | pl_PL |
dc.references | S. Kitamoto, H. Nagao-Kitamoto, P. Kuffa, N. Kamada, Regulation of virulence: the rise and fall of gastrointestinal pathogens, J. Gastroenterol. 51, 195–205 (2016). doi: 10.1007/s00535- 015-1141-5 | pl_PL |
dc.references | W. P. Maddison, P. E. Midford, S. P. Otto, Estimating a Binary Character’s Effect on Speciation and Extinction, Syst. Biol. 56, 701–710 (2007). doi: 10.1080/10635150701607033 | pl_PL |
dc.references | Maple 18.00 (2014). Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario. | pl_PL |
dc.references | M. D. Pirie, E. G. H. Oliver, A. Mugrabi de Kuppler, B. Gehrke, N. C. Le Maitre, M. Kandziora, D. U. Bellstedt, The biodiversity hotspot as evolutionary hot-bed: spectacular radiation of Erica in the Cape Floristic Region, BMC Evol. Biol. 16, 190 (2016). doi: 10.1186/s12862-016-0764-3 | pl_PL |
dc.references | R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, URL https://www.R-project.org/, 2016. | pl_PL |
dc.references | J. L. Sachs, R. G. Skophammer, N. Bansal, J. E. Stajich, Evolutionary origins and diversification of proteobacterial mutualists, Proc. R. Soc. B 281: 20132146 (2013). doi: 10.1098/rspb.2013.2146 | pl_PL |
dc.references | G. E. Schwarz, Estimating the dimension of a model, Ann. Stat. 6, 461–454 (1978). doi: 10.1214/aos/1176344136 | pl_PL |
dc.identifier.doi | 10.14708/ma.v48i1.6465 | |
dc.relation.volume | 1 | pl_PL |
dc.discipline | matematyka | pl_PL |