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Abstract We apply multitype continuous time Markov branching models to study

pathogenicity in E. coli, a bacterium belonging to the genus Escherichia. First, we
examine brie�y the properties of multitype branching processes and we also sur-

vey some fundamental limit theorems regarding the behavior of such models under

various conditions. These theorems are then applied to discrete, state dependent

models in order to analyze pathogenicity in a published clinical data set consisting

of 251 strains of E. coli. We use well established methods, incorporating maximum

likelihood techniques, to estimate speciation rates as well as the rates of transition

between di�erent states of the models. From the analysis, we not only derive new

results, but we also verify some preexisting notions about virulent behavior in bac-

terial strains.
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1. Introduction In this paper, we explore the possibility of utilizing
the theory of branching processes into analyzing pathogenicity in bacterial
strains. For that purpose, we �rst review fundamental properties of multi-
type, continuous time Markov branching processes as well as their behavior
in the long time limit. Then, we apply multitype branching models to exam-
ine virulence in E. coli strains, and perform an in depth analysis on the limits
of proportions of E. coli in di�erent states of the models. The strains used in
this study were isolated from human hosts, and obtained from a previously
published data set (by Bartoszek et al. [4]) of pathogenic and nonpathogenic
E. coli bacteria.

In recent years, considerable research has been conducted regarding the
use of branching processes to explore various biological phenomena. A two�
type Markov branching model, coined as the `binary state speciation and
extinction' (BiSSE) model, was proposed by Maddison et al. [12] to assess
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the impact of binary characters on rates of diversi�cation�the di�erence
between speciation and extinction rates. The parameters of the BiSSE model
describe speciation and extinction in the two types, as well as the transitions
that take place from one type to the other. This model was recently used
by Bartoszek et al. [4] in order to estimate parameters from genetic data
of E. coli populations, and predict pathogenicity of various virulence factors
(VFs)�agents that enable bacteria to replicate and spread within the host
by damaging and eluding its defences [6]. Bartoszek et al. used a modi�ed
version of the BiSSE model, in which the extinction rates were assumed to be
zero. Another Markov branching model, named as the `multistate speciation
and extinction' (MuSSE) model, was later introduced by FitzJohn [7] as an
extension of the BiSSE model to binary traits with more than two states.

In this paper, we apply the MuSSE model with zero extinction rates to
estimate state dependent speciation and transition rates for a real, known
collection of pathogenic and nonpathogenic strains of E. coli bacteria (ob-
tained from [4]) that reside in the human digestive and urinary tracts. The
bacterial strains are subdivided into four categories depending on whether
or not they carry a VF in the gut and bladder of the human host. Lately, a
number of researchers have successfully used the discrete state MuSSE model
for estimation of various parameters. For instance, Sachs et al. (2013) used
the MuSSE model to estimate trait-dependent diversi�cation and transition
rates amongst states consisting of free-living, mutualistic, parasitic, and dual
lifestyle bacteria in the Proteobacteria phylum. Using this model, they in-
ferred that proteobacterial mutualist lineages arise from free�living and par-
asitic ancestors, but rarely transition back to a parasitic or free�living status.
Pirie et al. [14] implemented the MuSSE framework to compare diversi�ca-
tion rates of 800 species in the plant genus Erica, endemic to �ve geographical
regions�Palearctic, Tropical African, Madagascan, Drakensberg and Cape.
Arbuckle et al. [1] used the BiSSE and MuSSE models to show that speciation
and extinction rates vary across defensive traits in amphibians.

With this study, we ask the following questions:

(a) Is it possible to utilize state dependent branching processes to analyze
pathogenic behavior in bacteria?

(b) How do maximum likelihood methods behave when estimating param-
eters (such as speciation rates and transition rates between states) of
multitype models?

(c) Based only on a �nite sample, do the estimated parameters provide
reasonable information on the almost sure limits of the proportion of
bacterial strains, and if so, can they be used further to obtain plausible
con�dence regions for these limits?

To answer these questions, we proceed by �rst giving a concise survey of
n�type branching processes. More speci�cally, we recall fundamental theorems
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regarding the long time behavior of branching models. These limit theorems
are obtained from earlier works of Athreya and Ney [2] and Janson [8]. In
order to thoroughly explain the mathematical background, which is perti-
nent to understanding the forthcoming biological application, we introduce
some technical notation as well. For multitype branching models, a matrix
known as the mean o�spring matrix�whose entries consist of the net growth
and transition rates of the process�is of central importance; the limit be-
havior of the process can be completely characterized by this matrix through
its eigenvalues and corresponding eigenvectors. In the coming sections, we
evaluate the mean o�spring matrix for various sub�models of the multitype
branching process, and present interesting results associated with the largest
eigenvalue of these matrices. After reviewing the general characteristics of
multitype branching processes, we apply 4�type branching sub�models to a
known clinical data set of virulent and nonvirulent E. coli strains, and, with
the help of the MuSSE model, obtain rates of speciation and transition among
the 4 states of the models. Using the aforementioned limit theorems, we also
perform an in depth analysis on the limits of proportions of E. coli strains in
di�erent states. Finally, we compare the results obtained from various models
and draw some useful inferences regarding pathogenic behavior in virulent
bacteria.

2. General multitype branching processes We consider an n�type
continuous time Markov branching process X(t), given by the column vector
X(t) =

(
X1(t), . . . , Xn(t)

)′
, t ≥ 0, where each Xi(t), i = 1, . . . , n, represents

the number of type�i particles at time t. The lifetime of each type is assumed
to be exponentially distributed with intensity ai, i = 1, . . . , n. We introduce
a vector a whose components comprise of ai, i.e., a = (a1, . . . , an). With
each type i, we also associate j = (j1, . . . , jn), a vector of nonnegative integer
coordinates. Then, the o�spring distribution of the n types is speci�ed by the
coordinates of p(j), where

p(j) =
(
p(1)(j), . . . , p(n)(j)

)
and

∑
j p

(i)(j) = 1, for all i = 1, . . . , n. Here, p(i)(j) = p(i)(j1, . . . , jn) gives
the probability that a type�i particle creates j1 type�1 o�spring, j2 type�2
o�spring, . . ., jn type�n o�spring [3]. Letting s = (s1, . . . , sn), the generating
function is recognized as f(s) =

(
f (1)(s), . . . , f (n)(s)

)
, where, for each i =

1, . . . , n,

f (i)(s) =
∑
j

p(i)(j)sj =
∑

j1,..., jn≥0

p(i)(j1, . . . , jn)sj11 · . . . · s
jn
n

determines the distribution of the number of various types of o�spring pro-
duced by a type�i particle. Further, we consider the matrix A = {aik : i, k =
1, . . . , n}, where
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aik = ai

(∂f (i)(s)

∂sk

∣∣∣
s=(1,...,1)

− δik
)

and δik =

{
1 if i = k
0 otherwise.

The mean matrix of the branching process is given by

M(t) = eAt = {mik(t) : i, k = 1, . . . , n},

with mik(t) = E[Xk(t)|Xi(t) = 1] [3]. Following [8], we identify the mean
o�spring matrix A as

A = AT ,

where T in the superscript denotes the matrix transpose. We let γ be the
largest positive eigenvalue of A, and, let u and v be the left and right nor-
malized column eigenvectors, respectively, of A, corresponding to γ. Thus,
u′A = γu′ and Av = γv.

We now recall some limit results for multitype branching processes that
will be used in later sections for the analysis of branching models. These
results, numbered 1, 2 and 3 here, are stated formally in Appendix A of the
paper as Theorems A.3, A.4 and A.5, respectively.

1. The fundamental limit result for multitype branching processes sig-
ni�es the existence of a nonnegative random variable W such that
e−γtX(t)

a.s.−→ Wv as t → ∞ [2]. This implies that the number of
particles increases to in�nity at a speed eγt, with the distribution of the
types speci�ed by a random multiple of the right eigenvector.

2. For a real nonnegative number N , let TN be the �rst time when the
total size of the branching process reaches a given level N > 0. Then,
letting C be the sum of the components of v, and under additional
assumptions (see Appendix A), the asymptotic distribution of types at
TN is given by the right normalized eigenvector v in the sense that
X(TN )/N

a.s.−→ v/C as N →∞ [8].

3. Under further assumptions on the size of the eigenvalues of the o�spring
matrixA, asN →∞, the centered and normalized type distribution has
a Gaussian limit distribution in the sense that

√
N (X(TN )/N − v/C)

D−→ N (0,Σb), where N (0,Σb) is a multivariate normal distribution and
Σb is the covariance matrix stated explicitly in Appendix A [8].

3. A 4�type branching model Consider a 4�type, continuous time
Markov branching process, X(t) =

(
X1(t), . . . , X4(t)

)′
, t ≥ 0, where each

Xi(t), i = 1, . . . , 4, gives the number of type�i particles at time t. Let λi
represent the speciation rate of type�i particles, i = 1, . . . , 4. Further, q12 and
q21 are the rates of transition from type�1 → 2 and type�2 → 1, respectively,
and similarly, q34 and q43 the transition rates from type�3 → 4 and type�
4 → 3, respectively. Finally, m32 is assumed to be the transition rate from
type�3 to type�2. The branching rates of X(t) are thus given as
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Figure 1: Diagrammatic representation of the speciation and transition parameters
in the 4�type branching model X(t).

(x1, x2, x3, x4) 7→



(x1 + 1, x2, x3, x4) λ1x1

(x1, x2 + 1, x3, x4) λ2x2

(x1, x2, x3 + 1, x4) λ3x3

(x1, x2, x3, x4 + 1) λ4x4

(x1 − 1, x2 + 1, x3, x4) q12x1

(x1 + 1, x2 − 1, x3, x4) q21x2

(x1, x2, x3 − 1, x4 + 1) q34x3

(x1, x2, x3 + 1, x4 − 1) q43x4

(x1, x2 + 1, x3 − 1, x4) m32x3,

(1)

where the initial stateX(0) can be either (0, 0, 1, 0)′ or (0, 0, 0, 1)′, since type�
3 and type�4 are the dominating types (see Def. A.1). Figure 1 summarizes
the parameters used in this branching process. The motivation behind choos-
ing this particular model is that the results derived here will be applied in
Section 4 to obtain results and draw inferences from a real data set of E. coli
bacterial strains. Note that a 4�type branching model would generally consist
of 20 parameters: 4 speciation parameters, 4 extinction parameters and 12 pa-
rameters representing transition rates between states. Here we have assumed
nonextinction, and we have also set 7 (out of 12) transition parameters to
zero.

In order to identify the o�spring matrix A for this process, we recall
notation from Section 2, and let a = (a1, . . . , a4), where

a1 = λ1 + q12, a2 = λ2 + q21, a3 = λ3 + q34 +m32, a4 = λ4 + q43.

We recognize the o�spring distribution of the four states as

p(1)(2, 0, 0, 0) = λ1/a1, p(1)(0, 1, 0, 0) = q12/a1,

p(2)(0, 2, 0, 0) = λ2/a2, p(2)(1, 0, 0, 0) = q21/a2,

p(3)(0, 0, 2, 0) = λ3/a3, p(3)(0, 0, 0, 1) = q34/a3, p(3)(0, 1, 0, 0) = m32/a3,
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p(4)(0, 0, 0, 2) = λ4/a4, p(4)(0, 0, 1, 0) = q43/a4.

Using the above information, we are now able to �nd the generating functions:

f (1)(s1, s2, s3, s4) = (λ1s
2
1 + q12s2)/a1,

f (2)(s1, s2, s3, s4) = (λ2s
2
2 + q21s1)/a2,

f (3)(s1, s2, s3, s4) = (λ3s
2
3 + q34s4 +m32s2)/a3,

f (4)(s1, s2, s3, s4) = (λ4s
2
4 + q43s3)/a4.

The mean o�spring matrix A for this process is de�ned as

A =


δ1 q21 0 0
q12 δ2 m32 0
0 0 δ3 q43

0 0 q34 δ4

 ,

where δ1 = λ1 − q12, δ2 = λ2 − q21, δ3 = λ3 −m32 − q34 and δ4 = λ4 − q43.
Letting

H1 = δ1 + δ2, H2 = δ3 + δ4,

S1 =
√

(δ1 − δ2)2 + 4q12q21, S2 =
√

(δ3 − δ4)2 + 4q34q43,

the eigenvalues of A, obtained using Maple 18.00 [13], are

γ1 =
1

2
(H1 + S1), γ2 =

1

2
(H1 − S1), γ3 =

1

2
(H2 + S2), γ4 =

1

2
(H2 − S2).

We have

γ1 ≥ max{δ1, δ2} ≥ min{δ1, δ2} ≥ γ2, γ3 ≥ max{δ3, δ4} ≥ min{δ3, δ4} ≥ γ4.

It can be seen that γ1 ≥ 0 and γ3 ≥ 0 for any set of parameters. Also, γ1 > 0
if at least one of δ1 and δ2 is strictly positive, or if both are negative, then one
is strictly negative, and a similar result holds for γ3. Further, we also require
the eigenvectors of A to be used later in the application of limit theorems
A.3�A.5. Thus, using again Maple 18.00 [13], the left column eigenvectors of
A, after substantial manual simpli�cation, are found as

u1 =
( 1

2(G1 + S1)(γ1G3 +G4)

q21m32q43
,
γ1G3 +G4

q43m32
,
γ1 − λ4 + q43

q43
, 1
)′
,

u2 =
(−1

2(−G1 + S1)(γ2G3 +G4)

q21m32q43
,
γ2G3 +G4

q43m32
,
γ2 − λ4 + q43

q43
, 1
)′
,

u3 =
(

0, 0, − 1

2q43

(
G2 − S2

)
, 1
)′
, u4 =

(
0, 0, − 1

2q43

(
G2 + S2

)
, 1
)′
,
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and similarly, the right column eigenvectors are computed as

v1 =
(

1, − 1

2q21

(
G1 − S1

)
, 0, 0

)′
, v2 =

(
1, − 1

2q21

(
G1 + S1

)
, 0, 0

)′
,

v3 =
(

1,
γ3 − λ1 + q12

q21
,
γ3G3 +G4

−q21m32
,

1
2(G2 + S2)(γ3G3 +G4)

−q21m32q43

)′
,

v4 =
(

1,
γ4 − λ1 + q12

q21
,
γ4G3 +G4

−q21m32
,

1
2(G2 − S2)(γ4G3 +G4)

−q21m32q43

)′
,

where G1 = δ1 − δ2, G2 = δ4 − δ3, G3 = H1 −H2, and G4 = δ3δ4 − δ1δ2 −
q43(m32 +q34)+q12q21 +q43m32. It should be noted that for certain parameter
settings, where one of q21, q43 or m32 vanish, the above expressions do not
apply. Instead, alternate formulae have to be found on a case by case basis.

Now let γ = max{γ1, γ3} be the largest positive eigenvalue, and let v =
(ν1, ν2, ν3, ν4)′ be the normalized form of the corresponding right eigenvector.
Then, from Thm. A.3 (and as described in limit result 1), there exists a
nonnegative random variable W , such that as t→∞,(

X1(t)e−γt, . . . , X4(t)e−γt
)′ a.s.−→ (ν1W, . . . , ν4W )′.

Moreover, let ν1 + ν2 + ν3 + ν4 = C > 0 and recall that TN is the �rst time
when the total number of species reaches a level N . Using limit result 2 (or
Thm.A.4), we have that as N →∞,

X(TN )

N
=

(
X1(TN ), . . . , X4(TN )

)′
N

a.s.−→ (ν1, . . . , ν4)′

C
. (2)

In order to apply the limit result 3 (see also Thm.A.5 in Appendix A), we need
more information on the variance characteristics of the branching process. For
that purpose, consider �rst the column vectors, ξi , i = 1, . . . , 4, given as

ξ1 =

{
(1, 0, 0, 0)′ with probability λ1/a1

(−1, 1, 0, 0)′ -"- q12/a1
,

ξ2 =

{
(0, 1, 0, 0)′ with probability λ2/a2

(1,−1, 0, 0)′ -"- q21/a2
,

ξ3 =


(0, 0, 1, 0)′ with probability λ3/a3

(0, 0,−1, 1)′ -"- q34/a3

(0, 1,−1, 0)′ -"- m32/a3

,

ξ4 =

{
(0, 0, 0, 1)′ with probability λ4/a4

(0, 0, 1,−1)′ -"- q43/a4
.
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Next, de�ne a matrix B as

B =

4∑
i=1

νiaiE(ξiξ
′
i) =


b1 −b2 0 0
−b2 b3 −b4 0

0 −b4 b5 −b6
0 0 −b6 b7

 ,

where b1 = a1ν1 + q21ν2, b2 = q12ν1 + q21ν2, b3 = a2ν2 + q12ν1 + m32ν3,
b4 = m32ν3, b5 = a3ν3 + q43ν4, b6 = q34ν3 + q43ν4 and b7 = a4ν4 + q34ν3. Now,
since A is a 4 × 4 matrix with 4 distinct eigenvalues, it is diagonalizable.
Hence, using Eq. (7) from Appendix A, the matrix ΣI is speci�ed by

ΣI =
∑

j:γj<
γ
2

∑
k:γk<

γ
2

û′jBûk

γ − γj − γk
v̂j v̂
′
k,

where column vectors ûi and v̂i are determined as

ûi =
ui

ui · vi
and v̂i = vi, i = 1, . . . , 4.

Finally using Eq. (6), the covariance matrix Σb is given by

Σb =
1

C3
M1ΣIM2,

where M1 =


ν1 − C ν1 ν1 ν1

ν2 ν2 − C ν2 ν2

ν3 ν3 ν3 − C ν3

ν4 ν4 ν4 ν4 − C

 and M2 = MT
1 .

Under the condition that γ is greater than two times the second largest eigen-
value, and using the central limit theorem A.5, we have that

√
N

((
X1(TN ), . . . , X4(TN )

)′
N

− (ν1, . . . , ν4)′

C

)
D−→ N (0,Σb), (3)

as N →∞.
In the following section, we apply the above 4�type model to a clini-

cal data set of 251 bacterial strains, and obtain insightful results concerning
pathogenicity in E. coli bacteria. We will take N = 251, so that TN is the
�rst time when the total size of the branching process reaches 251, and hence
we can obtain the proportion of strains in various states of the model.

4. Application of the branching model to E. coli strains data

From [4], we obtain an E. coli data set of N = 251 strains, which forms the
tips of a given phylogenetic tree (see Fig. 1 and Fig. 3 in [4]). The tree is
�xed and describes the genealogical structure of the strains. The tree tips
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are grouped into 4 categories: pathogenic and nonpathogenic E. coli found in
the human gastrointestinal tract, and, pathogenic and nonpathogenic E. coli
found in the human urinary tract. Whether a bacterial strain is pathogenic or
not in any environment, depends on whether or not it is positive for carrying
a certain VF (such as toxins, invasins, hemolysins, etc.). Hence, the strains
are divided into the following 4 states

1 2 3 4

U0 U1 K1 K0

where
U0: negative for VF in the urinary tract,

U1: positive for VF in the urinary tract,

K1: positive for VF in the digestive tract,

K0: negative for VF in the digestive tract.

Virulence Factor (VF) N1 N2 N3 N4

astA - heat-stable enterotoxin 1 108 20 7 116
cnf1 - cytotoxic necrotizing factor 1 90 38 3 120
�mG - �mbrial protein 13 115 120 3
fyuA - pesticin receptor protein 50 78 74 49
hly1 - alpha hemolysin 88 40 5 118
iroN - IroN protein 44 84 36 87
iutA - ferric aerobactin receptor 66 62 77 46
papC - �mbrial protein 83 45 33 90
sat - secreted autotransporter toxin 113 15 46 77

Table 1: A list of various VFs and the number of strains, Ni, in each of the four
states obtained from [4]. Note that N1 + . . .+N4 = 251 for each VF.

From the data given in [4], we choose to analyze 9 VFs. These VFs along with
the number of strains, Ni, in each state i, i = 1, . . . , 4, are given in Table 1. We
model this data set by applying a 4�type, continuous time Markov branching
process X(t) = (U0, U1,K1,K0)′ and branching rates as given in Eq. (1).
Figure 1 gives a diagrammatic representation of the parameters used in the
model. In the �gure, λi, i = 1, . . . , 4, represent speciation rates of strains in
various states, q12, q21, q34, q43 are the transition rates from pathogenic to
nonpathogenic states and vice versa, and �nally, m32 represents migration
from state K1 to U1. As in [4], extinction rates are set to zero for all 4 states,
and, pathogenic and nonpathogenic strains are allowed to transition back and
forth in the same environment (urinary tract or intestine). It is well known
that E. coli travel from the gastrointestinal tract to the bladder in the human
host, and cause urinary tract infections ([5], [10]). Hence, we assume that E.
coli migrate from states K1 to U1.

All subsequent analysis of the bacterial data set is carried out in R [15].
The discrete MuSSE model [7] is applied to the data set of each VF to
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λ1 λ2 λ3 λ4 q12 q21 q34 q43 m32

1. λ1 λ2 λ3 λ4 q12 q12 q34 q43 m32

2. λ1 λ2 λ3 λ4 q12 q21 q34 q34 m32

3. λ1 λ2 λ3 λ4 q12 q12 q34 q34 m32

4. λ1 λ2 λ3 λ4 0 q21 q34 q43 m32

5. λ1 λ2 λ3 λ4 q12 0 q34 q43 m32

6. λ1 λ2 λ3 λ4 q12 q21 0 q43 m32

7. λ1 λ2 λ3 λ4 q12 q21 q34 0 m32

8. λ1 λ2 λ3 λ4 q12 q12 0 q43 m32

9. λ1 λ2 λ3 λ4 q12 q12 q34 0 m32

10. λ1 λ2 λ3 λ4 0 q21 q34 q34 m32

11. λ1 λ2 λ3 λ4 q12 0 q34 q34 m32

12. λ1 λ1 λ3 λ4 q12 q21 q34 q43 m32

13. λ1 λ2 λ3 λ3 q12 q21 q34 q43 m32

14. λ1 λ1 λ3 λ4 q12 q12 q34 q43 m32

15. λ1 λ2 λ3 λ3 q12 q21 q34 q34 m32

16. λ1 λ1 λ3 λ3 q12 q12 q34 q34 m32

17. 0 λ2 λ3 λ4 q12 q21 q34 q43 m32

18. λ1 0 λ3 λ4 q12 q21 q34 q43 m32

19. λ1 λ2 0 λ4 q12 q21 q34 q43 m32

20. λ1 λ2 λ3 0 q12 q21 q34 q43 m32

Table 2: A list of 20 parameter constraints used in the analysis. The �rst row gives
parameters for a model in which no constraints are applied, i.e., all parameters
are allowed to vary freely. The subsequent rows represent models in which at least
one constraint is used: a parameter is either constrained to be zero, or set equal
to another parameter. In each row succeeding the �rst, which is to be used as a
reference row in this table, the constrained parameters are highlighted in bold. For
example, in the row marked (1), q21 = q12, while the remaining parameters are free
to vary; in row (2), q43 = q34, etc.

obtain estimates for all parameters. This is achieved by making use of the
`make.musse()' function in the R package diversitree [7], which allows for
maximum likelihood estimation of the models' parameters. During the pa-
rameter estimation analysis of each VF, the initial state for the process is de-
termined by the relative probability of observing type�3 and type�4 strains,
i.e.,

(
0, 0, N3/(N3 + N4), N4/(N3 + N4)

)′
. To increase the estimation power

of the MuSSE framework, we try out various models in which di�erent con-
straints are applied on the parameters (the extinction rates already being set
to zero), as given in Table 2. From the table, it can be seen that parameters
are either set to be zero, or, pairs of parameters are constrained to be equal.
This is done by utilizing the `constrain()' function in the diversitree pack-
age. The most suitable constraint on the parameters is then chosen using the
Bayesian information criterion or BIC [17], that is, for each VF separately,
we choose that combination of constrained (or freely varying) parameter es-
timates which give the lowest BIC.
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VF λ1 λ2 λ3 λ4 q12 q21 q34 q43 m32

astA 26.39 0.000 229.6 0 176.0 904.4 407.4 41.68 65.53
cnf1 5.840 108.3 284.8 8.066 1.185 144.6 341.3 14.92 121.5
�mG 4.105 33.75 96.99 3.737 11.74 11.74 3.715 3.715 35.18
fyuA 0.464 51.71 120.7 4.242 0 38.36 47.40 6.445 46.71
hly1 4.630 101.7 265.6 10.58 0 131.1 287.9 17.77 110.4
iroN 1.843 48.50 164.0 0 21.20 60.93 178.0 20.55 51.44
iutA 0.000 64.93 126.6 3.923 49.07 157.0 43.34 5.527 46.21
papC 4.314 100.7 164.9 8.197 1.915 128.5 152.7 16.06 59.41
sat 6.059 165.6 157.4 6.493 0 307.3 102.4 9.691 65.62

Table 3: Parameter values for all VFs in the branching model X(t).

Results The parameter values obtained as a result of the analysis are given
in Table 3. We conclude that for 6 out of 9 VFs, whenever the parameters are
constrained in some manner, the model is a better �t to the given data set,
in contrast to when all the parameters are allowed to vary freely. From the
parameter values in Table 3, we have that:

(a) λ2 > λ1 for 8 out of 9 VFs, and λ3 > λ4 for all VFs. Thus, virulent strains
of E. coli, in both urinary and digestive environments, speciate at a higher
rate than nonvirulent strains.

(b) q21 ≥ q12 and q34 ≥ q43 for all VFs. Thus, E.coli bacteria, in both digestive
and urinary tracts, lose their pathogenicity at a higher rate as compared to
gaining it.

Using the mathematical analyses in previous sections and Appendix A, we
also �nd that in accordance with our assumptions (F1) to (F6), γ3 > 0 is the
largest eigenvalue for all VFs and v3 > 0 the corresponding right eigenvector.
Let v = (ν1, . . . , ν4)′ be the normalized version of v3, and let C = ν1+. . .+ν4,
as before. Then, from Thm.A.4 and using Eq. (2), we have for N = 251,

(N1, . . . , N4)′

N

a.s.−→ p = (p1, . . . , p4)′,

where p = (p1, . . . , p4)′ := v/C is the limit of the proportions of E. coli
strains. For all VFs, the values of Ni/N and pi, i = 1, . . . , 4, are given in
Table 4. The sum, p2 + p3, gives the probability of maintaining each VF in
the E. coli strains. From Table 4, we infer that the probability of maintaining
VFs varies in the strains; it depends on the VF under consideration. Figure 2
compares the value p2 + p3, with the sum N2/N +N3/N . It can be seen that
E. coli strains carrying VFs �mG, fyuA and iutA have a higher probability
of being virulent as compared to strains carrying cnf1, hly1 and sat.

Con�dence regions We now apply Thm. A.5 to construct con�dence re-
gions for p � the limit of proportions of E. coli strains. Using the expression
in Eq. (3), let
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VF N1/N N2/N N3/N N4/N p1 p2 p3 p4
astA 0.43 0.08 0.03 0.46 0.83 0.15 0.01 0.01
cnf1 0.36 0.15 0.01 0.48 0.60 0.06 0.02 0.32
�mG 0.05 0.46 0.48 0.01 0.08 0.45 0.44 0.03
fyuA 0.20 0.31 0.29 0.20 0.35 0.32 0.15 0.18
hly1 0.35 0.16 0.02 0.47 0.51 0.08 0.04 0.37
iroN 0.18 0.33 0.14 0.35 0.52 0.35 0.02 0.11
iutA 0.26 0.25 0.31 0.18 0.34 0.20 0.23 0.23
papC 0.33 0.18 0.13 0.36 0.52 0.10 0.07 0.31
sat 0.45 0.06 0.18 0.31 0.55 0.03 0.09 0.33

Table 4: Limit values, pi, for the the branching model X(t), and the proportion
of strains, Ni/N , in each state, i = 1, . . . , 4. Here, N = 251, Ni is the number of
strains in each state i, and pi = νi/C, where νi (i = 1, .., 4) are the components of

the normalized eigenvector v and C =
∑4

i=1 νi.
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Figure 2: A bar chart comparing the probabilities, p2 + p3, of maintaining VFs in
bacterial strains, with the sum, (N2 +N3)/N , of strain proportions. The values used
in this �gure are obtained from Table 4. p2 + p3 is represented by grey bars and
(N2 +N3)/N by black bars.

D2 = N

(
X̃(TN )

N
− ṽ

C

)′
(Σ̃b)−1

(
X̃(TN )

N
− ṽ

C

)
(4)

where vectors and matrices with the �rst type removed are denoted by a
tilde above them, that is, X̃(TN ) =

(
X2(TN ), . . . , X4(TN )

)′
= (N2, . . . , N4)′,

ṽ = (ν2, . . . , ν4)′, and Σ̃b = Σb with the �rst row and column removed.
Here, it is important to notice that the matrix Σb has rank 3, hence, for
the construction of the subsequent con�dence regions, we have removed the
counts for the �rst type (alternatively, we can choose to remove any one of
the four types) in Eq. (4). From the theory developed in Chapters 4.2 and 5.4
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VF D2 (N2, N3, N4)/N a b c

astA - - - - -
cnf1 10.35 (0.15, 0.01, 0.48) 0.651 0.091 0.046
�mG 3.421 (0.46, 0.48, 0.01) 0.352 0.034 0.021
fyuA 5.655 (0.31, 0.29, 0.20) 0.409 0.135 0.101
hly1 8.963 (0.16, 0.02, 0.47) 0.280 0.098 0.060
iroN - - - - -
iutA 5.989 (0.25, 0.31, 0.18) 0.488 0.127 0.061
papC 8.499 (0.18, 0.13, 0.36) 0.362 0.097 0.081
sat 6.589 (0.06, 0.18, 0.31) 0.172 0.098 0.045

Table 5: Speci�cation of con�dence ellipsoids for limits of proportions of E. coli

strains. For a signi�cance level α = 0.01, the observed generalized squared distance
D2, de�ned by Eq. (4) and (5), is given as D2 ≤ χ2

3(0.01) = 11.345. The center of
the con�dence ellipsoids is represented by (N2, N3, N4)/N , while the half-lengths of
the axes are denoted by a, b, and c.

of [9], at a given signi�cance level α, a 100(1 − α)% joint con�dence region
for p�which can be thought of as the mean of a multidimensional normal
distribution�is de�ned by ellipsoids such that,

D2 ≤ χ2
3(α), (5)

where χ2
3(α) is the upper α�level quantile of the χ2 distribution with 3 degrees

of freedom. The quantity D2 represents the square of the generalized distance
from the centre of the con�dence ellipsoid to a constant density surface. For
various VFs, the observed D2 value is calculated using Eq. (4), and is given
in the second column of Table 5. It can be seen that for astA and iroN,
we are unable to �nd D2, since the conditions of Thm. A.5 are not met for
these two VFs; the second largest eigenvalue γ1 is greater than γ3/2, i.e.,
γ3/2 < γ1 < γ3. In this case, weak convergence is shown but to a random
variable, whose distribution is not characterized, only its existence (Corollary
3.18 in [8]).

The axes of the con�dence ellipsoids and their relative lengths are deter-
mined using the eigenvalues and corresponding eigenvectors of the positive
de�nite matrix Σ̃b [9]. Since Σ̃b is a 3×3 matrix with the �rst type removed,
we can �nd a simultaneous con�dence ellipsoid for pi when i = 2, 3 and 4. Let
β, ζ, and η be the positive eigenvalues, and β̂, ζ̂, and η̂, the corresponding
right eigenvectors of Σ̃b. Then, the axes of the con�dence ellipsoids centered
at X̃(TN )/N , are given as

±a β̂ , ±b ζ̂ , and ± c η̂,

with a = D
√
β/N , b = D

√
ζ/N , and c = D

√
η/N being the half length of

the three axes. For various VFs, the axes lengths can be computed, as shown
in Table 5.
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Since Thm. A.5 is an asymptotic result, and our sample size consists of
only 251 data points, we must con�rm that Thm. A.5 has been successfully
implemented while �nding the con�dence regions in the aforementioned anal-
ysis. To achieve this, we check how the observed proportions (Ni/N) behave
for the observed number of strains (N = 251) by making use of simulated
trees. For the estimated model parameters, given in Table 3, we obtain the
clades evolution using the `tree.musse()' function of the diversitree package in
R. For various VFs, excluding astA and iroN, we simulate 10000 trees, each
with 251 tips. To ensure that the root of all simulated trees is a dominating
type (assumption (F5) in Appendix A), we take the prior distribution to be
concentrated on states 3 and 4, with probabilities equaling the observed rela-
tive proportions of types�3 and 4. For this, we use the `sample()' function of
R which randomly selects either of the two states with desired probabilities.
Out of the 10000 simulations, we take into consideration in the subsequent
analysis, only those trees in which the observed tips have at least one obser-
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Figure 3: For various VFs, histograms showing the distribution of generalized
squared distances for simulated trees. The values less than χ2

3(0.01) = 11.345 are
represented by white bars, and those greater than χ2

3(0.01) are given in black. Arrows
in each histogram represent the observed D2 value as obtained in Table 5.
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VF Nsim Fsim fsim
astA - - -
cnf1 7958 0.031 0.02
�mG 6588 0.236 0.01
fyuA 7276 0.074 0.01
hly1 8073 0.046 0.02
iroN - - -
iutA 7405 0.071 0.01
papC 7967 0.096 0.01
sat 7583 0.128 0.03

Table 6: Values obtained from simulating 10000 trees: Nsim denotes the total num-
ber of simulations, out of 10000, that are actually used in the analysis, Fsim is that
fraction of simulations for which the generalized square distance is greater than the
observed D2 value (given in Table 5), and fsim is that fraction of simulations for
which the generalized square distance is greater than χ2

3(0.01) = 11.345.

vation of type�3 or 4. This is due to the essential nonextinction assumption
of Thm. A.5 (cf. Def. A.2). For each VF, the number of simulations that we
use out of 10000 is denoted by Nsim, and shown in Table 6. From the 251 tip
counts of each simulated tree, we calculate the proportions of types, and then
obtain the D2 value given in Eq. (4), i.e., the squared generalized distance
from the simulated proportions (with the �rst coordinate removed) which lie
on the surface of an ellipsoid, to the ellipsoid's centre (at ṽ/C). Using the χ2

distribution with 3 degrees of freedom, we obtain from Eq. (5), how `far in
the tail' the observed D2 values lie.

The results are shown in the form of histograms in Figure 3. We con-
clude that the observed proportions are close to the ellipsoid's centre, i.e.,
the quantile corresponds to a level greater than a cuto� value of α = 0.01,
and thus for the given number of strains, N = 251, we are indeed close to
the asymptotic regime. From the histograms, we obtain the fraction of sim-
ulations, Fsim, which give a value of the generalized square distance greater
than the observed value of D2, as well as the fraction of simulations, fsim,
for which the generalized squared distance is greater than the critical value,
χ2

3(0.01) = 11.345. For each VF, these values are shown in Table 6.

5. Two variations of the branching model We now model the same
E. coli data set [4] by applying another 4�type, Markov branching process
Y (t) = (U0, U1,K1,K0)′ with branching rates as shown in Figure 4. All pa-
rameters of speciation and transition are the same as in the original process
X(t), except for the migration rate, m32, which is replaced by m42 in this
case. Since E. coli are assumed to travel from the intestinal to the urinary
tract and cause infections, here we assume that bacteria migrate from the
nonvirulent state K0 to the virulent state U1. The mean o�spring matrix, Â,
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Figure 4: Diagrammatic representation of the branching process Y (t). The four
states are similar to the ones in the branching model X(t). The parameters λi,
i = 1, . . . , 4, represent speciation rates in each state, q12, q21, q34 and q43 are the
transition rates between states, m42 represents migration from state K0 to U1.

for this process is given as

Â =


λ1 − q12 q21 0 0
q12 λ2 − q21 0 m42

0 0 λ3 − q34 q43

0 0 q34 λ4 − q43 −m42

 ,

with eigenvalues

γ̂1 =
1

2

(
λ1 − q12 + λ2 − q21 +

√
(λ1 − q12 − λ2 + q21)2 + 4q12q21

)
,

γ̂2 =
1

2

(
λ1 − q12 + λ2 − q21 −

√
(λ1 − q12 − λ2 + q21)2 + 4q12q21

)
,

γ̂3 =
1

2

(
λ3−m42−q34 +λ4−q43 +

√
(λ3 +m42 − q34 − λ4 + q43)2 + 4q34q43

)
,

γ̂4 =
1

2

(
λ3−m42−q34 +λ4−q43−

√
(λ3 +m42 − q34 − λ4 + q43)2 + 4q34q43

)
.

Using Maple 18.00 [13], the left and right column eigenvectors of Â are ob-
tained as

û1 =
( 1

2(G1 + S1)(γ̂1Ĝ3 + Ĝ4)

q21m42q34
,

(γ̂1Ĝ3 + Ĝ4)

q34m42
, 1,

γ̂1 − λ3 + q34

q34

)′
,

û2 =
( 1

2(G1 − S1)(γ̂2Ĝ3 + Ĝ4)

q21m42q34
,

(γ̂2Ĝ3 + Ĝ4)

q34m42
, 1,

γ̂2 − λ3 + q34

q34

)′
,

û3 =
(

0, 0, 1,
1

2q34

(
Ĝ2 + Ŝ2

))′
, û4 =

(
0, 0, 1,

1

2q34

(
Ĝ2 − Ŝ2

))′
,
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and

v̂1 =
(

1, − 1

2q21

(
G1 − S1

)
, 0, 0

)′
, v̂2 =

(
1, − 1

2q21

(
G1 + S1

)
, 0, 0

)′
,

v̂3 =
(

1,
γ̂3 − λ1 + q12

q21
,

1
2(Ĝ2 − Ŝ2)(γ̂3Ĝ3 + Ĝ4)

q21m42q34
,
γ̂3Ĝ3 + Ĝ4

−q21m42

)′
,

v̂4 =
(

1,
γ̂4 − λ1 + q12

q21
,

1
2(Ĝ2 + Ŝ2)(γ̂4Ĝ3 + Ĝ4)

q21m42q34
,
γ̂4Ĝ3 + Ĝ4

−q21m42

)′
,

respectively, where

Ĝ2 = δ4 −m42 − λ3 + q34, Ĝ3 = δ1 + δ2 − δ4 − λ3 + q34 +m42,

Ĝ4 = λ1q21 − λ1λ2 + λ2q12 + λ3λ4 − λ3m42 − λ3q43 − λ4q34 + q34m42,

Ŝ2 =

√
(Ĝ2)2 + 4q34q43,

while δ1, δ2, δ4, G1, and S1 are de�ned previously in Section 3. Similar to
the �rst model X(t), the package diversitree [7] in R is applied to each VF
and estimates of all parameters are obtained, as shown in Table 7. We apply
constraints given in Table 2, except that m32 is now replaced by m42 in the
table. The best constraint on the parameters is again chosen using the BIC.

VF λ1 λ2 λ3 λ4 q12 q21 q34 q43 m42

astA 3.031 138.9 0 86.05 27.85 448.9 8.210 18.47 27.88

cnf1 7.054 114.8 3.608 96.15 0 159.4 4.108 2.972 34.91

�mG 0.000 8.344 33.47 260.3 87.44 21.58 11.07 0 553.5

fyuA 3.192 68.53 117.9 0 8.990 67.68 124.2 24.75 14.25

hly1 4.768 109.4 0 86.64 0.823 145.7 8.042 17.18 27.30

iroN 0.875 48.39 4.562 107.5 0 31.93 6.113 31.19 42.69

iutA 0 75.26 157.2 7.472 36.64 158.8 104.9 3.066 12.50

papC 4.046 113.5 147.7 0 2.051 140.7 201.5 26.92 13.11

sat 5.793 173.1 0 107.1 0.000 318.2 14.71 65.11 34.35

Table 7: Parameter values for the branching process Y (t).

VF p̂1 p̂2 p̂3 p̂4
astA 0.42 0.06 0.14 0.38

cnf1 0.43 0.14 0.02 0.41

�mG 0.09 0.46 0.44 0.01

fyuA 0.34 0.21 0.17 0.28

hly1 0.43 0.12 0.11 0.34

iroN 0.31 0.36 0.15 0.18

iutA 0.13 0.08 0.30 0.49

papC 0.51 0.09 0.10 0.30

sat 0.50 0.04 0.28 0.18

Table 8: Limit values p̂i (i = 1, . . . , 4) for the the branching model Y (t).
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Figure 5: Distribution of generalized squared distances for those VFs for which
assumptions of Thm.A.5 hold under the model Y (t). The values less than χ2

3(0.01) =
11.345 are represented by white bars, and those greater than 11.345 are given in
black. Arrows in each histogram represent the observed D2 value.

VF N̂sim F̂sim f̂sim
astA 6885 0.040 0.05

cnf1 6473 0.647 0.02

�mG 6476 0.291 0.02

fyuA - - -

hly1 6777 0.010 0.03

iroN 7012 0.080 0.00

iutA 4473 0.010 0.19

papC 4157 0.064 0.01

sat 6776 0.02 0.03

Table 9: Results of the con�dence regions' analysis for p̂ corresponding to the process
Y (t). N̂sim represents that number of simulated trees (out of 10000) in which the
observed tips have at least a single observation of the dominating type�3 or 4. F̂sim is
the fraction of simulations for which the generalized squared distance is greater than
the observed D2 value. f̂sim is that fraction of simulations for which the generalized
squared distance is greater than χ2

3(0.01) = 11.345.
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For each VF, γ̂3 is found to be the largest eigenvalue, with corresponding
normalized eigenvector, say v̂. We again apply Thm. A.4 and using the esti-
mated parameters, obtain the limiting values p̂ = (p̂1, . . . , p̂4)′ = v̂/C, where
C is the sum of coordinates of v̂. The values of p̂ are given in Table 8. From
Tables 7 and 8, we infer that: (a) λ2 > λ1 for all VFs and λ3 < λ4 for 6 out
of 9 VFs, (b) q21 > q12 for 8 out of 9 VFs and q34 > q43 for 5 out of 9 VFs,
(c) the probability, p̂2 + p̂3, of prevalence of VFs in E. coli strains varies with
each VF�for instance, the VF �mG has the maximum probability of being
maintained. An analysis of the con�dence regions for p̂ is also carried out,
similar to the one for p in Section 4. Figure 5 and Table 9 give the results for
this analysis.

We apply yet another 4�type branching process Z(t) = (U0, U1,K1,K0)′

to the same data set. The branching rates are as shown in Figure 6. This time
we include migration from both virulent and nonvirulent states in the gas-
trointestinal tract to the virulent state of the urinary tract, using parameters
m32 and m42. The mean o�spring matrix Ā is given as

Ā =


λ1 − q12 q21 0 0
q12 λ2 − q21 m32 m42

0 0 λ3 − q34 −m32 q43

0 0 q34 λ4 − q43 −m42

 .

The eigenvalues of Ā are

γ̄1 =
1

2

(
λ1 − q12 + λ2 − q21 +

√
(λ1 − q12 − λ2 + q21)2 + 4q12q21

)
,

γ̄2 =
1

2

(
λ1 − q12 + λ2 − q21 −

√
(λ1 − q12 − λ2 + q21)2 + 4q12q21

)
,

γ̄3 =
1

2

(
λ3−m32−q34+λ4−m42−q43+

√
(λ3−m32−q34−λ4+m42+q43)2 + 4q34q43

)
,
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Figure 6: Branching rates for the model Z(t). λi, i = 1, . . . , 4, represent speciation
rates, q12, q21, q34 and q43 are the rates of transition between states, m32 and m42

are migration rates from state K1 to U1 and K0 to U1, respectively.
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γ̄4 =
1

2

(
λ3−m32−q34+λ4−m42−q43−

√
(λ3−m32−q34−λ4+m42+q43)2 + 4q34q43

)
.

The left and right column eigenvectors of Ā are obtained as

ū1 =
( 1

2(G1 + S1)(γ̄1Ḡ3 + Ḡ4)

q21G5
,
γ̄1Ḡ3 + Ḡ4

G5
, 1,

G6

G5

)′
,

ū2 =
(−1

2(−G1 + S1)(γ̄2Ḡ3 + Ḡ4)

q21G52

,
γ̄2Ḡ3 + Ḡ4

G52

, 1,
G62

G52

)′
,

ū3 =
(

0, 0, 1,
1

2q34

(
Ḡ2 + S̄2

))′
, ū4 =

(
0, 0, 1,

1

2q34

(
Ḡ2 − S̄2

))′
.

and

v̄1 =
(

1, − 1

2q21

(
G1 − S1

)
, 0, 0

)′
, v̄2 =

(
1, − 1

2q21

(
G1 + S1

)
, 0, 0

)′
,

v̄3 =
(

1,
γ̄3 − λ1 + q12

q21
,

(γ̄3Ḡ3 + Ḡ4)G8

q21G7
,
−(γ̄3Ḡ3 + Ḡ4)G9

q21G7

)′
,

v̄4 =
(

1,
γ̄4 − λ1 + q12

q21
,

(γ̄4Ḡ3 + Ḡ4)G82

q21G7
,
−(γ̄4Ḡ3 + Ḡ4)G92

q21G7

)′
.

respectively, where

Ḡ2 = d4 − δ3, Ḡ3 = δ1 + δ2 − δ3 − d4,

Ḡ4 = Ĝ4 −m32d4, S̄2 =
√

(Ḡ2)2 + 4q34q43,

G5 = m32(γ̄1 − d4) +m42q34, G52 = m32(γ̄2 − d4) +m42q34,

G6 = m42γ̄1 −m42λ3 +m32m42 +m32q43 +m42q34,

G62 = m42γ̄2 −m42λ3 +m32m42 +m32q43 +m42q34,

G7 = m2
42q34 −m2

32q43 −m32m42g2,

G8 = m42(−γ̄3 + d4) +m32q43, G82 = m42(−γ̄4 + d4) +m32q43

G9 = m32(−γ̄3 + δ3) +m42q34, G92 = m32(−γ̄4 + δ3) +m42q34,

with d4 = λ4 − q43 − m42 and δ1, δ2, δ3, G1, S1, Ĝ4 as de�ned in earlier
sections. Model analysis is carried out in R, and as before, the initial state is
determined by the relative probability of observing type�3 and type�4 strains.
We use the same constraints given in Table 2, except that both m32 and m42

are allowed to vary. In addition, we use 21 more constraints in which the
constraints from Table 2 are repeated using m32 = m42. The best constraints
are chosen according to BIC, and the parameter values obtained are given
in Table 10. From the parameters, we compute the eigenvalues and corre-
sponding eigenvectors of Ā. γ̄3 is found to be the largest eigenvalue for all
VFs. Moreover, p̄ = (p̄1, . . . , p̄4)′, denoting the limits of proportions of E. coli
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VF λ1 λ2 λ3 λ4 q12 q21 q34 q43 m32 m42

astA 3.031 138.8 0 86.05 27.86 448.8 8.210 18.47 0.000 27.88

cnf1 0 24.84 3.768 107.5 2.343 136.6 2.027 2.706 2.053 33.95

�mG 4.487 35.10 103.2 4.034 0 11.17 1.832 2.014 30.41 2.125

fyuA 3.705 57.57 116.2 0 8.254 56.65 69.75 12.72 36.23 0.000

hly1 4.768 109.4 0 86.64 0.823 145.7 8.046 17.18 0.000 27.30

iroN 1.902 48.60 164.7 0 20.77 60.34 181.2 20.79 51.59 0.000

iutA 0 71.13 155.1 7.056 38.11 148.3 47.56 1.058 9.561 9.561

papC 4.493 99.45 166.2 0 2.081 126.5 203.0 25.97 49.39 0.027

sat 6.003 164.8 141.0 0 0.000 299.9 124.1 17.00 44.77 0.000

Table 10: Parameter estimates for the branching model Z(t).

VF p̄1 p̄2 p̄3 p̄4
astA 0.42 0.06 0.14 0.38

cnf1 0.22 0.12 0.02 0.64

�mG 0.06 0.36 0.56 0.02

fyuA 0.42 0.26 0.12 0.20

hly1 0.42 0.12 0.11 0.35

iroN 0.55 0.37 0.01 0.06

iutA 0.07 0.06 0.59 0.28

papC 0.56 0.09 0.07 0.28

sat 0.52 0.03 0.11 0.34

Table 11: Limits of proportions of E. coli strains for the branching process Z(t).

VF N̄sim F̄sim f̄sim

astA 6757 0.042 0.06

cnf1 6810 0.004 0.01

�mG 6996 0.182 0.03

fyuA - - -

hly1 6845 0.012 0.02

iroN - - -

iutA 5421 0.129 0.15

papC 7033 0.023 0.01

sat 6733 0.110 0.04

Table 12: For the model Z(t), N̄sim represents the number of simulations (out of
10000) in which at least one observation of the dominating type�3 or 4 was obtained,
F̄sim gives that fraction of simulations for which the generalized squared distance is
greater than the observed value of D2, and f̄sim is that fraction of simulations for
which the generalized squared distance is greater than χ2

3(0.01) = 11.345.

strains and calculated using Thm.A.4, is given in Table 11. From the tables,
we conclude that: (a) λ2 > λ1 for all VFs and λ3 > λ4 for 6 out of 9 VFs.
(b) q21 > q12 and q34 ≥ q43 for 6 VFs. (c) m32 ≥ m42 for 6 out of 9 VFs.
The sum p̄2 + p̄3 gives the probability of prevalence of various VFs in E. coli
strains. An analysis regarding the con�dence regions for the limits of strain
proportions was also performed, similar to the one for the previous models.
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Figure 7: For the process Z(t), these histograms give the distribution of the general-
ized squared distances (obtained from Eq.(4)) of 10000 simulated trees for those VFs
for which Thm. A.5 is satis�ed. The values less than χ2

3(α) = 11.345, for α = 0.01,
are represented by white bars, while the remaining are given in black. Arrowed lines
on each histogram represent the observed D2 value for each VF.

The results are displayed in Figure 7 and Table 12.

6. Conclusions We now list some concise but useful inferences drawn
from the mathematical analysis of the three models. Here, we would also like
to state that in a future work, we plan to carry out a rigorous analysis of a
larger data set of E. coli strains, which would not only add to the current
results, but also lead to more comprehensive and solid biological conclusions.

1. E.coli strains carrying a VF speciate at faster rates as compared to strains
which do not carry a VF, in urinary tracts of the human host (Tables 3, 7
and 10). This result remains fairly constant in all three models. A similar
result was also obtained in [4], where it was shown that speciation rates
were higher for virulent E. coli strains as compared to nonvirulent strains
that were isolated from human urine samples. The same result, however, does
not hold for strains in the digestive tract; according to the process X(t) and
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Z(t), most virulent bacterial strains speciate faster than nonvirulent strains,
but the opposite is true under the model Y (t).

2. E.coli bacteria lose their virulence at a higher rate as compared to gaining
it, in both urinary and digestive tracts of the human hosts. Under all three
models, this behavior is exhibited for majority of the VFs (Tables 3, 7 and
10). This is consistent with the fact that bacteria maintain their virulence
only if conditions are favorable for host invasion or colonization, otherwise,
they lose their pathogenicity, since the expression of VFs is costly to maintain
and tends to decrease bacterial �tness [4, 11].

3. Pathogenic and nonpathogenic bacteria in the gut migrate to the urinary
tract at di�erent rates. This result is inferred from the analysis of the third
branching model Z(t) with two migration rates (Table 10). For 5 out of 9
VFs, pathogenic bacteria are found to migrate faster than the nonpathogenic
ones. However, compared separately, from Tables 3 and 7, m32 > m42 for
most VFs (8 out of 9).

4. The probability of maintaining virulence in bacterial strains (p2+p3, p̂2+p̂3

and p̄2 + p̄3 in the modelsX(t), Y (t) and Z(t), respectively) varies with the
VF under consideration�see Tables 4, 8 and 11. However, under all three
branching models, it is consistently seen that the VF �mG has the highest
chance of prevailing in virulent bacterial strains.

5. The con�dence region analysis of the limits of proportions of E.coli strains
shows that Thm.A.5 is more successfully implemented to the data set under
the �rst two models, X(t) and Y (t), as compared to the third model, Z(t).
From �gures 3, 5, and 7 we conclude that for Thm.A.5, the branching process
X(t) is a better �t for analyzing strains carrying astA, �mG, fyuA, hly1,
iutA, and sat, while Y (t) is suitable for cnf1, iroN and papC.

A. Appendix In this section, we state the limit theorems that are ap-
plied in this paper for the analysis of bacterial strains data. We �rst list
some important de�nitions and assumptions that relate to n�type branching
processes.

Definition A.1 A type�p is said to be dominating if it is possible to obtain
every other type, say type�q (q = 1, . . . , n, and q 6= p), in a branching process
that starts with a single type�p particle. The set of all dominating types is
called the dominating class [8].

Definition A.2 A branching process becomes essentially extinct if there
are no particles from the dominating class at some time instance [8].

Assumptions:

(F1) Following a branching event involving a type�p particle, the number of
type�p particles either increases, or decreases by at most one, while the
number of type�q particles, q = 1, . . . , n, q 6= p, always increases.
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(F2) Following a branching event involving a type�p particle, all changes in
the number of type�q particles, q = 1, . . . , n, have �nite means and
variances, that is, the process never explodes.

(F3) The largest eigenvalue, γ, of the mean o�spring matrix A is positive,
i.e., the multitype branching process is supercritical, hence, there exists
a positive probability of nonextinction.

(F4) The largest eigenvalue of A is simple, i.e., the algebraic multiplicity of
γ is one.

(F5) There exists a dominating type�p, such that the multitype branching
process starts with at least one particle of type�p.

(F6) The largest eigenvalue, γ, belongs to the dominating class.

Theorem A.3 (Theorem 1 in [2]) For the branching process X(t),

lim
t→∞

e−γtX(t) = Wv

exists with probability 1, where W is a nonnegative random variable, γ is the
largest eigenvalue of the mean o�spring matrix A, and v is the normalized
right eigenvector of A corresponding to γ. �

Let b ∈ Rn be a �xed column vector and let N ≥ 0. De�ne

Tb(N) = min{t ≥ 0 : b ·X(t) ≥ N}

to be the �rst time when b · X(t) exceeds N . Also let b · v > 0. Then,
conditioned on essential nonextinction, Tb(N) < ∞ for all N ≥ 0 and b ·
X(t)

a.s.−→∞ as t→∞ (Lemma 3.14 in [8]).

We now state two more limit theorems, which are applied in the main
sections of the paper with the special case b = (1, 1, . . . , 1) ∈ Rn.

Theorem A.4 (Theorem 3.15 in [8]) Assume (F1) to (F6) and let b ·v > 0.
Then, conditioned on essential nonextinction, as N →∞,

X
(
Tb(N)

)
N

a.s.−→ v

b · v
.

�

Let ∆ be the set of all eigenvalues, γi, of A. Of course, the largest
eigenvalue γ also belongs to ∆. There exist projection matrices Pγi , such
that

∑
γi∈∆Pγi = I, where I is the identity matrix. Let P be the pro-

jection matrix onto the sum of the eigenspaces corresponding to γi < γ/2,
that is, P =

∑
γi∈∆1

Pγi , where ∆1 = {γi ∈ ∆ : γi < γ/2}. Also, let
ξi = (ξi1, . . . , ξin)′ be a random column vector with integer coordinates, de-
noting the change in population if a branching event occurs at a particle
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of type�i, and de�ne the matrix B as B =
n∑
i=1

νiaiBi, where νi represents

the coordinates of the eigenvector v and Bi = E(ξiξ
′
i). Furthermore, de�ne

another matrix ΣI as

ΣI =

∫ ∞
0
P esAB(P esA)′e−sγds,

where s ∈ R [8] .

Theorem A.5 (Corollary 3.16 in[8]) Assume (F1) to (F6) and b · v > 0.
Suppose further that γ/2 > γ(n−1), where γ(n−1) is the second largest eigen-
value, i.e., the second largest eigenvalue is less than half the largest eigenvalue.
Then, conditioned on essential nonextinction, as N →∞,

√
N

(
X
(
Tb(N)

)
N

− v

b · v

)
D−→ N (0,Σb),

where

Σb = (b · v)−1

(
I − vb′

b · v

)
ΣI

(
I − bv′

b · v

)
(6)

is the covariance matrix with rank n− 1. �

For the application in Sections 3�5, we consider the special case in which
A is a diagonalizable matrix. Then, there exist column vectors ûi and v̂i,
such that, û′iA = γiû

′
i, Av̂i = γiv̂i, and ûi · v̂j = δij for i, j = 1, . . . , n. Using

Lemma 5.3 in [8], the matrices P and P esA can now be expressed as

P =
∑

j:γj∈∆1

v̂j û
′
j and P esA =

∑
j:γj∈∆1

esγj v̂j û
′
j ,

respectively, and hence ΣI becomes

ΣI =
∑

j:γj∈∆1

∑
k:γk∈∆1

û′jBûk

γ − γj − γk
v̂j v̂
′
k. (7)

Author Contributions: Development of mathematical models and analytical calcula-
tions, IK, DT and KB; provision of biological data, MM, PP and SS; implementation of
statistical software, KB and DT; data analysis, manuscript writing and editing, DT.

Funding: KB was supported by Vetenskapsrådets grant no. 2017-04951. MM and PP were
partially supported by IMB PAS.

Con�icts of Interest: The authors declare no con�ict of interest. The funders had no
role in the design of the study; in the collection, analyses, or interpretation of data; in the
writing of the manuscript, or in the decision to publish the results.

Abbreviations



84 Using multitype branching models to analyze bacterial pathogenicity

The following abbreviations are used in this article:
BiSSE binary state speciation and extinction VF virulence factor
MuSSE multistate speciation and extinction astA heat-stable enterotoxin
cnf1 cytotoxic necrotizing factor �mG �mbrial protein
fyuA pesticin receptor protein hly1 alpha hemolysin
iroN IroN protein iutA ferric aerobactin receptor
papC �mbrial protein sat secreted autotransporter toxin
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