Nonlinear Principal Component Analysis for Geographically Weighted Temporal‑spatial Data
Date
2018Author
Krzyśko, Mirosław
Łukaszonek, Wojciech
Ratajczak, Waldemar
Wołyński, Waldemar
Metadata
Show full item recordAbstract
Schölkopf, Smola and Müller (1998) have proposed a nonlinear principal component analysis (NPCA) for fixed vector data. In this paper, we propose an extension of the aforementioned analysis to temporal‑spatial data and weighted temporal‑spatial data. To illustrate the proposed theory, data describing the condition of state of higher education in 16 Polish voivodships in the years 2002–2016 are used. Schölkopf, Smola i Müller (1998) zaproponowali analizę nieliniowych składowych głównych (NPCA) dla ustalonych danych wektorowych. Niniejszy artykuł zawiera rozszerzenie tej metody na dane czasowo‑przestrzenne oraz czasowo‑przestrzenne geograficznie ważone. Każdy obiekt jest scharakteryzowany za pomocą macierzy Xi, rozmiaru T × p, zawierającej wartości p cech zaobserwowanych w T momentach czasowych, i = 1, …, n. Macierze te są przekształcane nieliniowo do przestrzeni Hilberta i budowana jest scentrowana macierz jądrowa. Ostatecznie macierz ta jest podstawą konstrukcji nieliniowych składowych głównych. W przypadku danych geograficznie ważonych macierz Xizostaje zastąpiona macierzą wiXi, gdzie wijest dodatnią wagą geograficzną związaną z i‑tym miejscem obserwacji, i = 1, …, n. Teoria zilustrowana jest przykładem dotyczącym stanu szkolnictwa wyższego w 16 polskich województwach, notowanego w latach 2002–2016.
Collections