Pokaż uproszczony rekord

dc.contributor.authorKuryłek, Wojciech
dc.date.accessioned2025-06-30T17:17:12Z
dc.date.available2025-06-30T17:17:12Z
dc.date.issued2025-04-10
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/55806
dc.description.abstractThis investigation delves into the significance of precise earnings forecasts for publicly traded companies in achieving investment success. It emphasises the importance of this aspect, particularly in markets with limited analyst coverage, such as emerging markets including Poland. The study assesses the accuracy of predictions generated using the Autoregressive Distributed Lag (ARDL) framework with the XGBoost type of modelling and various methods of combining forecasts compared to the seasonal random walk model. Positioned as an intermediate step between time series and multivariate forecasting, these models are applied to earnings per share (EPS) data of companies listed on the Warsaw Stock Exchange from 2009 to 2019, i.e. the last financial crisis and the pandemic shock. The seasonal random walk model attained the lowest error rates based on the Mean Arctangent Absolute Percentage Error (MAAPE) metric, a conclusion substantiated by rigorous statistical tests and robustness checks employing different periods and error metrics. The enhanced performance of the simpler seasonal random walk model may be ascribed to the relatively uncomplicated nature of the Polish stock market.en
dc.description.abstractNiniejszy artykuł analizuje znaczenie dokładnych prognoz zysków spółek notowanych na giełdzie dla osiągnięcia sukcesu inwestycyjnego. Podkreśla wagę tego aspektu, szczególnie na rynkach o ograniczonym pokryciu przez analityków, takich jak rynki wschodzące, do których zaliczana jest Polska. W badaniu dokonano oceny trafności prognoz generowanych przy użyciu metody autoregresyjnej z rozkładem opóźnień przy różnych metodach łączenia prognoz w porównaniu z sezonowym modelem błądzenia losowego. Modele te, stanowiące etap pośredni pomiędzy szeregami czasowymi a prognozowaniem uwzględniającym wiele zmiennych objaśniających, mają zastosowanie do danych dotyczących zysku na akcję spółek notowanych na Giełdzie Papierów Wartościowych w Warszawie w latach 2008–2019, tj. między ostatnim kryzysem finansowym a szokiem spowodowanym pandemią. Model sezonowego błądzenia losowego osiągnął najniższe poziomy błędów na podstawie metryki średniego argus tangensa bezwzględnego błędu procentowego. Wniosek ten jest poparty rygorystycznymi testami statystycznymi i kontrolami odporności z wykorzystaniem różnych okresów oraz wskaźników błędu. Lepszą wydajność prostszego modelu sezonowego błądzenia losowego można przypisać stosunkowo nieskomplikowanemu charakterowi polskiego rynku.pl
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;370en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.subjectearnings per shareen
dc.subjectrandom walken
dc.subjectAutoregressive Distributed Lagsen
dc.subjectXGBoosten
dc.subjectfinancial forecastingen
dc.subjectWarsaw Stock Exchangeen
dc.subjectzysk na akcjępl
dc.subjectbłądzenie losowepl
dc.subjectmodel autoregresyjny z rozkładem opóźnieńpl
dc.subjectXGBoostpl
dc.subjectprognozowanie finansowepl
dc.subjectGiełda Papierów Wartościowych w Warszawiepl
dc.titleAn Application of Autoregressive Distributed Lag-Models for Earnings per Share Forecasting in Polanden
dc.title.alternativeCzy modele autoregresyjne z rozkładem opóźnień mogą poprawić prognozowanie zysku na akcję w Polsce?pl
dc.typeArticle
dc.page.number1-19
dc.contributor.authorAffiliationUniversity of Warsaw, Faculty of Management, Warsaw, Polanden
dc.identifier.eissn2353-7663
dc.referencesBall R., Ghysels E. (2017), Automated Earnings Forecasts: Beat Analysts or Combine and Conquer?, “Management Science”, vol. 64(10), pp. 4936–4952, https://doi.org/10.1287/mnsc.2017.2864en
dc.referencesBall R., Watts R. (1972), Some Time Series Properties of Accounting Income, “The Journal of Finance”, vol. 27(3), pp. 663–681, http://doi.org/10.1111/j.1540-6261.1972.tb00991.xen
dc.referencesBanerjee P. (2020), A Guide on XGBoost hyperparameters tuning, https://www.kaggle.com/code/prashant111/a-guide-on-xgboost-hyperparameters-tuning [accessed: 14.02.2024].en
dc.referencesBansal N., Nasseh A., Strauss J. (2015), Can we consistently forecast a firm’s earnings? Using combination forecast methods to predict the EPS of Dow firms, “Journal of Economics and Finance”, vol. 39(1), pp. 1–22, https://doi.org/10.1007/s12197-012-9234-yen
dc.referencesBathke Jr. A.W., Lorek K.S. (1984), The Relationship between Time-Series Models and the Security Market’s Expectation of Quarterly Earnings, “The Accounting Review”, vol. 59(2), pp. 163–176.en
dc.referencesBentancor A., Hardy N., Pincheira-Brown P. (2023), An Inconvenient Truth about Forecast Combinations, “Mathematics”, vol. 11(1)8, 3806, https://doi.org/10.3390/math11183806en
dc.referencesBradshaw M., Drake M., Myers J., Myers L. (2012), A re-examination of analysts’ superiority over time-series forecasts of annual earnings, “Review of Accounting Studies”, vol. 17(4), pp. 944–968, http://doi.org/10.1007/s11142-012-9185-8en
dc.referencesBrandon Ch., Jarrett J.E., Khumawala S.B. (1987), A Comparative Study of the Forecasting Accuracy of Holt‐Winters and Economic Indicator Models of Earnings Per Share For Financial Decision Making, “Managerial Finance”, vol. 13(2), pp. 10–15, http://doi.org/10.1108/eb013581en
dc.referencesBrooks L.D., Buckmaster D.A. (1976), Further Evidence of the Time Series Properties of Accounting Income, “The Journal of Finance”, vol. 31(5), pp. 1359–1373, http://doi.org/10.1111/j.1540-6261.1976.tb03218.xen
dc.referencesBrown L.D., Rozeff M.S. (1979), Univariate Time-Series Models of Quarterly Accounting Earnings per Share: A Proposed Model, “Journal of Accounting Research”, vol. 17(1), pp. 179–189, http://doi.org/10.2307/2490312en
dc.referencesBrown L.D., Griffin P.A., Hagerman R.L., Zmijewski M.E. (1987), Security analyst superiority relative to univariate time-series models in forecasting quarterly earnings, “Journal of Accounting and Economics”, vol. 9(1), pp. 61–87, http://doi.org/10.1016/0165-4101(87)90017-6en
dc.referencesChen T., Guestrin C. (2016), XGBoost: A Scalable Tree Boosting System, “Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining”, pp. 785–794, https://doi.org/10.1145/2939672.2939785en
dc.referencesConroy R., Harris R. (1987), Consensus Forecasts of Corporate Earnings: Analysts’ Forecasts and Time Series Methods, “Management Science”, vol. 33(6), pp. 725–738, http://doi.org/10.1287/mnsc.33.6.725en
dc.referencesDou Y., Tan S., Xie D. (2023), Comparison of machine learning and statistical methods in the field of renewable energy power generation forecasting: a mini review, “Frontiers in Energy Research”, vol. 11, 1218603, https://doi.org/10.3389/fenrg.2023.1218603en
dc.referencesElton E.J., Gruber M.J. (1972), Earnings Estimates and the Accuracy of Expectational Data, “Management Science”, vol. 18(8), pp. 409–424, http://doi.org/10.1287/mnsc.18.8.B409en
dc.referencesFoster G. (1977), Quarterly Accounting Data: Time-Series Properties and Predictive-Ability Results, “The Accounting Review”, vol. 52(1), pp. 1–21.en
dc.referencesFourkiotis K.P., Tsadiras A. (2024), Applying Machine Learning and Statistical Forecasting Methods for Enhancing Pharmaceutical Sales Predictions, “Forecasting”, vol. 6(1), pp. 170–186, https://doi.org/10.3390/forecast6010010en
dc.referencesGaio L., Gatsios R., Lima F., Piamenta Jr. T. (2021), Re-examining analyst superiority in forecasting results of publicly-traded Brazilian companies, “Revista de Administracao Mackenzie”, vol. 22(1), eRAMF210164, https://doi.org/10.1590/1678-6971/eramf210164en
dc.referencesGriffin P. (1977), The Time-Series Behavior of Quarterly Earnings: Preliminary Evidence, “Journal of Accounting Research”, vol. 15(11), pp. 71–83, http://doi.org/10.2307/2490556en
dc.referencesHarris R.D.F., Wang P. (2019), Model-based earnings forecasts vs. financial analysts’ earnings forecasts, “British Accounting Review”, vol. 51(4), pp. 424–437, https://doi.org/10.1016/j.bar.2018.10.002en
dc.referencesHyndman R., Kang Y., Li F., Wang X. (2023), Forecast combinations: An over 50-year review, “International Journal of Forecasting”, vol. 39(4), pp. 1518–1547, https://doi.org/10.1016/j.ijforecast.2022.11.005en
dc.referencesJarrett J.E. (2008), Evaluating Methods for Forecasting Earnings Per Share, “Managerial Finance”, vol. 16, pp. 30–35, http://doi.org/10.1108/eb013647en
dc.referencesJohnson T.E., Schmitt T.G. (1974), Effectiveness of Earnings Per Share Forecasts, “Financial Management”, vol. 3(2), pp. 64–72.en
dc.referencesKim S., Kim H. (2016), A new metric of absolute percentage error for intermittent demand forecasts, “International Journal of Forecasting”, vol. 32(3), pp. 669–679, http://doi.org/10.1016/j.ijforecast.2015.12.003en
dc.referencesKuryłek W. (2023a), The modeling of earnings per share of Polish companies for the post-financial crisis period using random walk and ARIMA models, “Journal of Banking and Financial Economics”, vol. 1(19), pp. 26–43, http://doi.org/10.7172/2353-6845.jbfe.2023.1.2en
dc.referencesKuryłek W. (2023b), Can exponential smoothing do better than seasonal random walk for earnings per share forecasting in Poland?, “Bank & Credit”, vol. 54(6), pp. 651–672.en
dc.referencesKuryłek W. (2024), Can we profit from BigTechs’ time series models in predicting earnings per share? Evidence from Poland, “Data Science in Finance and Economics”, vol. 4(2), pp. 218–235, http://doi.org/10.3934/DSFE.2024008en
dc.referencesLacina M., Lee B., Xu R. (2011), An Evaluation of Financial Analysts and Naïve Methods in Forecasting Long-Term Earnings, [in:] K.D. Lawrence, R.K. Klimberg (eds.), Advances in Business and Management Forecasting, Emerald, Bingley, pp. 77–101, http://doi.org/10.1108/S1477-4070(2011)0000008009en
dc.referencesLorek K.S. (1979), Predicting Annual Net Earnings with Quarterly Earnings Time-Series Models, “Journal of Accounting Research”, vol. 17(1), pp. 190–204, http://doi.org/10.2307/2490313en
dc.referencesLorek K.S, Willinger G.L. (1996), A multivariate time-series model for cash-flow data, “Accounting Review”, vol. 71, pp. 81–101.en
dc.referencesPagach D.P., Warr R.S. (2020), Analysts versus time-series forecasts of quarterly earnings: A maintained hypothesis revisited, “Advances in Accounting”, vol. 51, pp. 1–15, http://doi.org/10.1016/j.adiac.2020.100497en
dc.referencesPope P.F., Wang P. (2005), Earnings Components, Accounting Bias and Equity Valuation, “Review of Accounting Studies”, vol. 10(4), pp. 387–407, https://doi.org/10.1007/s11142-005-4207-4en
dc.referencesPope P.F., Wang P. (2014), On the relevance of earnings components in valuation and forecasting links, “Review of Quantitative Finance and Accounting”, vol. 42, pp. 399–413, https://doi.org/10.1007/s11156-013-0347-yen
dc.referencesQian X.Y. (2017), Financial Series Prediction: Comparison Between Precision of Time Series Models and Machine Learning Methods, pp. 1–9, https://doi.org/10.48550/arXiv.1706.00948en
dc.referencesRuland W. (1980), On the Choice of Simple Extrapolative Model Forecasts of Annual Earnings, “Financial Management”, vol. 9(2), pp. 30–37.en
dc.referencesSimon J., Pochetti F. (2020), Learn Amazon SageMaker. A guide to building, training, and deploying machine learning models for developers and data scientists, Packt, Birmingham–Mumbai.en
dc.referencesTimmermann A. (2006), Forecast combinations, [in:] G. Elliott, C. Granger, A. Timmermann, Handbook of Economic Forecasting, vol. 1, Elsevier, Amsterdam, pp. 135–196.en
dc.referencesWatts R.L. (1975), The Time Series Behavior of Quarterly Earnings, “Working Paper, Department of Commerce, University of New Castle”, April.en
dc.referencesWilcoxon F. (1945), Individual Comparisons by Ranking Methods, “Biometrics”, vol. 1, pp. 80–83, http://doi.org/10.2307/3001968en
dc.contributor.authorEmailwkurylek@wz.uw.edu.pl
dc.identifier.doi10.18778/0208-6018.370.01
dc.relation.volume1


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by/4.0