Show simple item record

dc.contributor.authorDegirmendžić, Jan
dc.date.accessioned2025-04-16T09:17:53Z
dc.date.available2025-04-16T09:17:53Z
dc.date.issued2024-12-30
dc.identifier.issn1427-9711
dc.identifier.urihttp://hdl.handle.net/11089/55357
dc.description.abstractThe significantly faster increase in Arctic temperature compared to the global average is causing changes in wind patterns in the mid-latitudes of the upper troposphere. Studies suggest possible changes in the geometry of wind fields, evident in the waviness of geopotential lines or in a series of discrete circulation patterns. This study aligns with the latter research focus. The objective of the analysis is to estimate long-term trends in the Vangengeim-Girs (V-G) macroforms from 1979 to 2023, and since 1999, which is considered a breaking point in the course of Arctic warming.Trend coefficients were estimated for the 45-year period and in moving 21-year window for characteristics describing V-G forms variability. The results indicate a nonlinear trend in the annual frequency of W and E forms, the number of E episodes, and the duration of C and W episodes. Other parameters maintained a consistent direction of change (+/−) throughout the study period: frequency of C(+), number of W(+), C(+), WEC(+) episodes, duration of WEC(−) and E(−).Processes indicating an increase in meridionality include the decline in W frequency after 2005, the rise in E frequency after 2003, the increase in C frequency and the number of C episodes from 1979 to 2023, and the rise in the number of E episodes along with a significant decline in W episode duration after 1999.Additionally, significant trends in the increase (decrease) in the number (duration) of all episodes suggest an increase in day-to-day circulation variability.en
dc.description.abstractWyraźnie szybszy, w porównaniu ze średnią globalną temperaturą, wzrost temperatury Arktyki, powoduje zmiany pola wiatru w szerokościach umiarkowanych w wyższej troposferze. Opracowania wskazują na możliwe zmiany geometrii pola wiatru, widoczne w zafalowaniu pola geopotencjału lub w serii dyskretnych wystąpień układów cyrkulacji. Niniejsze opracowanie wpisuje się w drugi wątek badań. Celem analizy jest oszacowanie wieloletnich trendów makroform Vangengeima-Girsa (V-G) w latach 1979–2023 oraz w okresie od roku 1999, który uznaje się jako rok przełomowy w przebiegu ocieplenia Arktyki.Oszacowano współczynniki trendów w 45-leciu oraz w ruchomych 21-letnich okresach charakterystyk opisujących zmienność form V-G. Rezultaty wskazują na nieliniowy przebieg częstości rocznych W, E, liczby epizodów E oraz czasu trwania epizodów C i W. Pozostałe parametry utrzymują jednolity kierunek zmian (+/−) przez cały badany okres: częstość C(+), liczba epizodów W(+), C(+), WEC(+), czas trwania WEC(−) i E(−).Wyróżniono procesy, które wskazują na wzrost przepływu południkowego: spadek częstości formy W po roku 2005, wzrost częstości formy E po roku 2003, wzrost częstości formy C oraz liczby epizodów C w okresie 1979–2023, wzrost liczby epizodów E oraz znaczny spadek czasu trwania epizodów W po roku 1999. Ponadto istotne trendy: dodatni (ujemny) liczby (czasu trwania) wszystkich epizodów wskazują na wzrost zmienności z dnia na dzień cyrkulacji.pl
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Geographica Physica;23pl
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectVangengeim-Girs macro-circulation formsen
dc.subjectcirculation episodesen
dc.subjectlong-term trendsen
dc.subjectArctic amplificationen
dc.subjectFormy makro-cyrkulacji Vangengeima-Girsapl
dc.subjectepizody cyrkulacyjnepl
dc.subjectwieloletnie trendypl
dc.subjectocieplenie Arktykipl
dc.titleChanges in the frequency and persistence of the Vangengeim-Girs macro-circulation forms in the period 1979–2023en
dc.title.alternativeZmiany częstości oraz czasu trwania makroform Vangengeima-Girsa w latach 1979–2023pl
dc.typeArticle
dc.page.number27-37
dc.contributor.authorAffiliationUniversity of Lodz, Faculty of Geographical Sciences, Department of Physical Geographyen
dc.identifier.eissn2353-6063
dc.referencesAlizadeh O., Lin Z. 2021. Rapid Arctic warming and its link to the waviness and strength of the westerly jet stream over West Asia. Global and Planetary Change 199, 103447: 1–11. https://doi.org/10.1016/j.gloplacha.2021.103447en
dc.referencesBarry R.G., Carleton A.M. 2001. Synoptic and dynamic climatology. Routledge, London and New York: 620 pp.en
dc.referencesBlackport R., Screen J.A. 2020. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Science Advances 6, eaay2880: 1–9. https://doi.org/10.1126/sciadv.aay2880en
dc.referencesChylek P., Folland C., Klett J.D., Wang M., Hengartner N., Lesins G., Dubey M.K. 2022. Annual mean Arctic Amplification 1970–2020: Observed and simulated by CMIP6 climate models. Geophysical Research Letters 49, e2022GL099371: 1–8. https://doi.org/10.1029/2022GL099371en
dc.referencesDegirmendžić J., Kożuchowski K. 2019. Variation of macro-circulation forms over the Atlantic-Eurasian temperate zone according to the Vangengeim-Girs classification. International Journal of Climatology: 1–15. https://doi.org/10.1002/joc.6118en
dc.referencesDi Capua G., Coumou D. 2016. Changes in meandering of the Northern Hemisphere circulation. Environmental Research Letters 11, 094028: 1–9. https://doi.org/10.1088/1748-9326/11/9/094028en
dc.referencesDimitrieev A.A., Belyazo V.A. 2006. Kalendarnyj katalog atmosfernykh processov po cirkumpolarnoj zonie severnogo polushariya i ikh kharakteristiki za period s 1949 po 2005 g (Calendar catalogue of atmospheric processes in the Northern Hemisphere circumpolar zone and their characteristics in the period 1949–2005), [w:] Kosmos, Planetarnaya Klimaticheskaya Izmenchivost’ i Atmosfera Polarnykh Regionov. St. Petersburg: Gidrometeoizdat: 358 pp. (in Russian).en
dc.referencesFrancis J.A., Vavrus S.J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters 39, L06801: 1–6. https://doi.org/10.1029/2012GL051000en
dc.referencesFrancis J.A., Vavrus S.J. 2015. Evidence for a wavier jet stream in response to rapid Arctic warming. Environmental Research Letters 10, 014005: 1–12. https://doi.org/10.1088/1748-9326/10/1/014005en
dc.referencesHanna E., Cropper T.E., Hall R.J., Cappelen J. 2016. Greenland Blocking Index 1851–2015: A regional climate change signal. International Journal of Climatology 36: 4847–4861. https://doi.org/10.1002/joc.4673en
dc.referencesHuth R., Cahynova M., Kysely J. 2010. The Hess and Brezowsky synoptic catalogue: A timeless concept (although with a few drawbacks). EMS Annual Meeting Abstracts 7, EMS2010-733, 10th EMS/8th ECAC.en
dc.referencesKornhuber K., Messori G. 2023. Recent Increase in a Recurrent Pan-Atlantic Wave Pattern Driving Concurrent Wintertime Extremes. Bulletin of the American Meteorological Society 104: 1694–1708. https://doi.org/10.1175/BAMS-D-21-0295.1en
dc.referencesKożuchowski K., Degirmendžić J. 2018. Zmienność form cyrkulacji środkowotroposferycznej według klasyfikacji Wangenheima-Girsa i ich relacje z polem ciśnienia na poziomie morza. Przegląd Geofizyczny LXIII (1–2): 89–122.en
dc.referencesKučerová M., Beck C., Philipp A., Huth R. 2017. Trends in frequency and persistence of atmospheric circulation types over Europe derived from a multitude of classifications. International Journal of Climatology 37: 2502–2521. https://doi.org/10.1002/joc.4861en
dc.referencesMarsz A.A. 2013. Frekwencja makrotypów cyrkulacji środkowotroposferycznej według klasyfikacji Wangengejma-Girsa w okresie zimowym a pole ciśnienia atmosferycznego nad Europą i północną Azją. Przegląd Geofizyczny 58: 3–23.en
dc.referencesMarsz A.A. 2023. Wewnątrzsystemowe mechanizmy zmienności i zmian klimatu. Stowarzyszenie Klimatologów Polskich, Reda–Warszawa: 279 pp.en
dc.referencesMartin J.E. 2021. Recent trends in the waviness of the Northern Hemisphere wintertime polar and subtropical jets. Journal of Geophysical Research: Atmospheres 126, e2020JD033668: 1–15. https://doi.org/10.1029/2020JD033668en
dc.referencesMontgomery D.C., Peck E.A., Vining G.G. 1990. Introduction to linear regression analysis. Wiley Series in Probability and Statistics, New York: 872 pp.en
dc.referencesMoon W., Kim B.-M., Yang G.-H., Wettlaufer J.S. 2022. Wavier jet streams driven by zonally asymmetric surface thermal forcing. Proceedings of the National Academy of Sciences USA 119, e2200890119: 1–8. https://doi.org/10.1073/pnas.2200890119en
dc.referencesNowosad M. 2017. Variability of the zonal circulation index over Central Europe according to the Litynski method. Geographia Polonica 90: 417–430. https://doi.org/10.7163/GPol.0111en
dc.referencesOverland J.E., Wang M. 2010. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus 62A: 1–9. https://doi.org/10.1111/j.1600-0870.2009.00421.xen
dc.referencesOverland J.E., Dethloff K., Francis J.A., Hall R.J., Hanna E., Kim S.-J., Screen J.A., Shepherd T.G., Vihma T. 2016. Nonlinear response of mid-latitude weather to the changing Arctic. Nature Climate Change 6: 992–999. https://doi.org/10.1038/NCLIMATE3121en
dc.referencesPena-Ortiz C., Gallego D., Ribera P., Ordonez P., Alvarez-Castro M.D.C. 2013. Observed trends in the global jet stream characteristics during the second half of the 20th century. Journal of Geophysical Research: Atmospheres 118: 2702–2713. https://doi.org/10.1002/jgrd.50305en
dc.referencesSchemm S., Röthlisberger M. 2024. Aquaplanet simulations with winter and summer hemispheres: Model setup and circulation response to warming. Weather and Climate Dynamics 5: 43–63. https://doi.org/10.5194/wcd-5-43-2024en
dc.referencesSepp M. 2005. Influence of atmospheric circulation on environmental variables in Estonia. Dissertationes Geographicae Universitatis Tartuensis 25: 84.en
dc.referencesSidorenkov N.S., Orlov I.A. 2008. Atmospheric circulation epochs and climate changes. Russian Meteorology and Hydrology 33: 553–559. https://doi.org/10.3103/S1068373908090021en
dc.referencesStewart K.D., Macleod F. 2022. A laboratory model for a meandering zonal jet. Journal of Advances in Modeling Earth Systems 14, e2021MS002943: 1–24. https://doi.org/10.1029/2021MS002943en
dc.referencesStrong C., Davis R.E. 2007. Winter jet stream trends over the Northern Hemisphere. Quarterly Journal of the Royal Meteorological Society 133: 2109–2115. https://doi.org/10.1002/qj.171en
dc.referencesWang Y., Yang Y., Huang F. 2024. Cold Air Outbreaks in Winter over the Continental United States and Its Possible Linkage with Arctic Sea Ice Loss. Atmosphere 15: 1–14. https://doi.org/10.3390/atmos15010063en
dc.referencesWoollings T., Drouard M., O’Reilly C.H., Sexton D.M.H., McSweeney C. 2023. Trends in the atmospheric jet streams are emerging in observations and could be linked to tropical warming. Communications Earth & Environment 4 (125): 1–8. https://doi.org/10.1038/s43247-023-00792-8en
dc.contributor.authorEmailjan.degirmendzic@geo.uni.lodz.pl
dc.identifier.doi10.18778/1427-9711.23.03


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0