Pokaż uproszczony rekord

dc.contributor.authorZema, Tomasz
dc.date.accessioned2023-12-19T12:41:53Z
dc.date.available2023-12-19T12:41:53Z
dc.date.issued2023-12-11
dc.identifier.urihttp://hdl.handle.net/11089/48863
dc.description.abstractThis report provides an overview of the Invited Session titled "Computer Science for Green Technologies and Sustainable Development", held during the 27th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems from September 6–8, 2023, in Athens, Greece. The session was co-chaired by Adam Sulich and Tomasz Zema, with additional organizational support from Letycja Sołoducho-Pelc. The session requirement was attendance by participants in person. The purpose of this report is to summarize the papers presented and the discussions that took place within the session. Therefore, this paper has a descriptive approach and does not attempt to combine the presented papers.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesWładza Sądzenia;25pl
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.titleComputer Science for Green Technologies and Sustainable Development: Invited session Report at KES 2023en
dc.typeOther
dc.page.number156-163
dc.contributor.authorAffiliationWroclaw University of Economics and Businessen
dc.identifier.eissn2300-1690
dc.referencesCavojsky, M., & Drozda, M. (2023). Search by Pattern in GPS Trajectories. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 495 LNICST, 117–132. https://doi.org/10.1007/978-3-031-31891-7_9en
dc.referencesFranczyk, B., Hernes, M., Kozierkiewicz, A., Kozina, A., Pietranik, M., Roemer, I., & Schieck, M. (2020). Deep learning for grape variety recognition. Procedia Computer Science, 176, 1211–1220. https://doi.org/10.1016/j.procs.2020.09.117en
dc.referencesJakkaladiki, S. P., Janečková, M., Krunčík, J., Malý, F., & Otčenášková, T. (2023). Deep learning-based education decision support system for student E-learning performance prediction. Scalable Computing Practice and Experience, 24(3), 327–338. https://doi.org/10.12694/scpe.v24i3.2188en
dc.referencesKozar, Ł. (2017). Environmental risk management in the enterprise as a way to support the development of green economy. Prace Naukowe Uniwersytetu Ekonomicznego We Wrocławiu, 470, 62–74. https://doi.org/10.15611/pn.2017.470.06en
dc.referencesKozar, Ł., & Oleksiak, P. (2022). Organizacje wobec wyzwań zrównoważonego rozwoju – wybrane aspekty. Wydawnictwo Uniwersytetu Łódzkiego. https://doi.org/10.18778/8220-819-1en
dc.referencesLewoc, J. B., Izworski, A., Skowronski, S. F., Kieleczawa, A., Hersh, M., & Chomiak-Orsa, I. (2015). Engineering ethics problems in a developing country. W Ethical Engineering for International Development and Environmental Sustainability. Springer-Verlag London Ltd. https://doi.org/10.1007/978-1-4471-6618-4_8en
dc.referencesMarkowska, A., Krzywonos, M., Čuljak, M., Walaszczyk, E., Miałkowska, K., Chojnacka-Komorowska, A., Matouk, K., & Śnierzyński, M. (2022). Machine learning for environmental life cycle costing. Procedia Computer Science, 207, 4087–4096. https://doi.org/10.1016/j.procs.2022.09.471en
dc.referencesMartusewicz, J., Szewczyk, K., & Wierzbic, A. (2022). The Environmental Protection and Effective Energy Consumption in the Light of the EFQM Model 2020 – Case Study. Energies, 15(19), 1–17. https://doi.org/10.3390/en15197260en
dc.referencesSulich, A., & Sołoducho-Pelc, L. (2022). The circular economy and the Green Jobs creation. Environmental Science and Pollution Research, 29(10), 14231–14247. https://doi.org/10.1007/s11356-021-16562-yen
dc.referencesSulich, A., & Zema, T. (2023). Green energy transition in Germany: A bibliometric study. Forum Scientiae Oeconomia, 11(2), 175–195. https://doi.org/10.23762/FSO_VOL11_NO2_9en
dc.referencesZema, T., Kozina, A., Sulich, A., Römer, I., & Schieck, M. (2022). Deep learning and forecasting in practice: an alternative costs case. Procedia Computer Science, 207, 2958–2967. https://doi.org/10.1016/j.procs.2022.09.354en
dc.referencesZema, T., Sulich, A., & Kulhanek, L. (2023). Energy sales forecasting in a sustainable development context: bibliometric review. W Z. Nedelko & R. Korez-Vide (Red.), 7th FEB International Scientific Conference: Strengthening Resilience by Sustainable Economy and Business – Towards the SDGs (ss. 99–108). University of Maribor. https://doi.org/https://doi.org/10.18690/um.epf.3.2023en
dc.contributor.authorEmailtomasz.zema@ue.wroc.pl
dc.identifier.doi10.18778/2300-1690.25.10


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0