Pokaż uproszczony rekord

dc.contributor.authorGraczyk, Małgorzata
dc.contributor.authorCeranka, Bronisław
dc.date.accessioned2022-03-24T12:11:53Z
dc.date.available2022-03-24T12:11:53Z
dc.date.issued2019-09-30
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/41288
dc.description.abstractThe problem of determining unknown measurements of objects in the model of spring balance weighing designs is presented. These designs are considered under the assumption that experimental errors are uncorrelated and that they have the same variances. The relations between the parameters of weighing designs are deliberated from the point of view of optimality criteria. In the paper, designs in which the product of the variances of estimators is possibly the smallest one, i.e. D‑optimal designs, are studied. A highly D‑efficient design in classes in which a D‑optimal design does not exist are determined. The necessary and sufficient conditions under which a highly efficient design exists and methods of its construction, along with relevant examples, are introduced.en
dc.description.abstractW artykule zaprezentowano problemy związane z wyznaczaniem nieznanych miar obiektów w modelu sprężynowego układu wagowego. Układy te badano przy założeniu, że błędy pomiarów są nieskorelowane i mają równe wariancje. Relacje między parametrami układów wagowych rozważano z punktu widzenia kryteriów optymalności. Analizowano takie układy, w których iloczyn wariancji estymatorów jest możliwie najmniejszy, czyli układy D‑optymalne. W klasach, w których nie istnieją układy D‑optymalne, wyznaczono układy wysoce D‑efektywne. Podano warunki konieczne i dostateczne, przy których spełnieniu układy wysoce efektywne istnieją, oraz ich przykładowe metody konstrukcji.pl
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;344en
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subjecthighly D-efficient designen
dc.subjectspring balance weighing designen
dc.subjectsprężynowy układ wagowypl
dc.subjectukład wysoce D-efektywnypl
dc.titleA Highly D‑efficient Spring Balance Weighing Design for an Even Number of Objectsen
dc.title.alternativeWysoce D‑efektywny sprężynowy układ wagowy dla parzystej liczby obiektówpl
dc.typeArticle
dc.page.number17-27
dc.contributor.authorAffiliationGraczyk, Małgorzata - Poznań University of Life Sciences, Faculty of Agronomy and Bioengineering Department of Mathematical and Statistical Methodsen
dc.contributor.authorAffiliationCeranka, Bronisław - Poznań University of Life Sciences, Faculty of Agronomy and Bioengineering Department of Mathematical and Statistical Methodsen
dc.identifier.eissn2353-7663
dc.referencesBanerjee K. S. (1975), Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics, Marcel Dekker Inc., New York.en
dc.referencesBeckman R. J. (1973), An applications of multivariate weighing designs, “Communication in Statistics”, no. 1(6), pp. 561–565.en
dc.referencesBulutoglu D. A., Ryan K. J. (2009), D‑optimal and near D‑optimal 2k fractional factorial designs of resolution V, “Journal of Statistical Planning and Inference”, no. 139, pp. 16–22.en
dc.referencesCeranka B., Graczyk M. (2014), The problem of D‑optimality in some experimental designs, “International Journal of Mathematics and Computer Application Research”, no. 4, pp. 11–18.en
dc.referencesCeranka B., Graczyk M. (2018), Highly D‑efficient designs for even number of objects, “REVSTAT‑Statistical Journal”, no. 16, pp. 475–486.en
dc.referencesCeranka B., Graczyk M. (2019), Recent developments in D‑optimal designs. Communication in Statistics – Theory and Methods, Accepted to publication.en
dc.referencesCeranka B., Katulska K. (1987), Zastosowanie optymalnych sprężynowych układów wagowych, “Siedemnaste Colloquium Metodologiczne z Agro‑Biometrii”, PAN, pp. 98–108.en
dc.referencesHarville D. A. (1997), Matrix Algebra from a Statistician’s Point of Perspective, Springer‑Verlag, New York.en
dc.referencesJacroux M., Notz W. (1983), On the optimality of spring balance weighing designs, “The Annals of Statistics”, no. 11(3), pp. 970–978.en
dc.referencesJacroux M., Wong C. S., Masaro J. C. (1983), On the optimality of chemical balance weighing design, “Journal of Statistical Planning and Inference”, no. 8, pp. 213–240.en
dc.referencesMasaro J., Wong C. S. (2008a), Robustness of A‑optimal designs, “Linear Algebra and its Applications”, no. 429, pp. 1392–1408.en
dc.referencesMasaro J., Wong C. S. (2008b), D‑optimal designs for correlated random errors, “Journal of Statistical Planning and Inference”, no. 130, pp. 4093–4106.en
dc.referencesNeubauer M. G., Watkins S., Zeitlin J. (1997), Maximal j‑simplices in the real d‑dimensional unit cube, “Journal of Combinatorial Theory”, Ser. A 80, pp. 1–12.en
dc.referencesRaghavarao D. (1971), Constructions and combinatorial problems in design of experiment, John Wiley and Sons, New York.en
dc.referencesShah K. R., Sinha B. K. (1989), Theory of Optimal Designs, Springer‑Verlag, Berlin.en
dc.contributor.authorEmailGraczyk, Małgorzata - malgorzata.graczyk@up.poznan.pl
dc.contributor.authorEmailCeranka, Bronisław - bronislaw.ceranka@up.poznan.pl
dc.identifier.doi10.18778/0208-6018.344.02
dc.relation.volume5


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by/3.0/
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by/3.0/