Pokaż uproszczony rekord

dc.contributor.authorBartoszewicz, Artur
dc.contributor.authorBienias, Marek
dc.contributor.authorGłąb, Szymon
dc.contributor.editorFilipczak, Małgorzata
dc.contributor.editorWagner-Bojakowska, Elżbieta
dc.date.accessioned2019-05-21T12:40:33Z
dc.date.available2019-05-21T12:40:33Z
dc.date.issued2013
dc.identifier.citationBartoszewicz A., Bienias M., Głąb Sz., Lineability, algebrability and strong algebrability of some sets in RR or CC, [w:] Traditional and present-day topics in real analysis. Dedicated to Professor Jan Stanisław Lipiński, Filipczak M., Wagner-Bojakowska E. (red.), Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013, s. 213-232, doi: 10.18778/7525-971-1.14pl_PL
dc.identifier.isbn978-83-7525-971-1
dc.identifier.urihttp://hdl.handle.net/11089/28352
dc.description.sponsorshipUdostępnienie publikacji Wydawnictwa Uniwersytetu Łódzkiego finansowane w ramach projektu „Doskonałość naukowa kluczem do doskonałości kształcenia”. Projekt realizowany jest ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Wiedza Edukacja Rozwój; nr umowy: POWER.03.05.00-00-Z092/17-00.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofFilipczak M., Wagner-Bojakowska E. (red.), Traditional and present-day topics in real analysis. Dedicated to Professor Jan Stanisław Lipiński, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013;
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject15A03pl_PL
dc.subject28A20pl_PL
dc.subject46J10pl_PL
dc.subject26A15pl_PL
dc.subjectalgebrabilitypl_PL
dc.subjectstrong algebrabilitypl_PL
dc.subjectperfectly everywhere surjective functionspl_PL
dc.subjectstrongly everywhere surjective functionspl_PL
dc.subjectnowhere continuous Darboux functionspl_PL
dc.subjectnowhere continuous compact to compact functionspl_PL
dc.subjectSierpiński-Zygmund functionspl_PL
dc.subjectset of continuity pointspl_PL
dc.titleLineability, algebrability and strong algebrability of some sets in RR or CCpl_PL
dc.typeBook chapterpl_PL
dc.page.number213-232pl_PL
dc.contributor.authorAffiliationŁódź University of Technology, Institute of Mathematicspl_PL
dc.referencesA. Aizpuru, C. Pérez-Eslava, F. J. García-Pacheco, J. B. Seoane-Sepúlveda, Lineability and coneability of discontinuous functions on R. Publ. Math. Debrecen 72 (2008), 129–139.pl_PL
dc.referencesI. Akbarbaglu, S. Maghsoudi, Large structures in certain subsets of Orlicz spaces, Linear Algebra Appl. 438, no. 11 (2013), 4363–4373.pl_PL
dc.referencesI. Akbarbaglu, S. Maghsoudi, J. B. Seoane-Sepúlveda, Porous sets and lineability of continuous functions on locally compact groups, J. Math. Anal. Appl. 406, no. 1 (2013), 211–218.pl_PL
dc.referencesR. M. Aron, J. A. Conejero, A. Peris, J. B. Seoane-Sepúlveda, Uncountably generated algebras of everywhere surjective functions, Bull. Belg. Math. Soc. Simon Stevin 17, no. 3 (2010), 571–575.pl_PL
dc.referencesR. M. Aron, V. I. Gurariy, J. B. Seoane-Sepúlveda, Lineability and spaceability of sets of functions on R, Proc. Amer. Math. Soc. 133, no. 3 (2005), 795–803.pl_PL
dc.referencesR. M. Aron, D. Pérez-García, J. B. Seoane-Sepúlveda, Algebrability of the set of non-convergent Fourier series, Studia Math. 175, no. 1 (2006), 83–90.pl_PL
dc.referencesR. M. Aron, J. B. Seoane-Sepúlveda, Algebrability of the set of everywhere surjective functions on C, Bull. Belg. Math. Soc. Simon Stevin 14, no. 1 (2007), 25–31.pl_PL
dc.referencesM. Balcerzak, A. Bartoszewicz, M. Filipczak, Nonseparable spaceability and strong algebrability of sets of continuous singular functions, J. Math. Anal. Appl. 407 (2013), 263-269.pl_PL
dc.referencesB. Balcar, F. Franěk, Independent families in complete Boolean algebras, Trans. Amer. Math. Soc. 274, no. 2 (1982), 607–618.pl_PL
dc.referencesT. Banakh, A. Bartoszewicz, M. Bienias, S. Głąb, The continuity properties of compact-preserving functions, Topology Appl. 160 (2013), 937–942.pl_PL
dc.referencesT. Banakh, A. Bartoszewicz, S. Głąb, E. Szymonik, Algebraic and topological properties of some sets in ℓ₁, Colloq. Math. 129 (2012), 75–85.pl_PL
dc.referencesA. Bartoszewicz, M. Bienias, S. Głąb, Independent Bernstein sets and algebraic constructions, J. Math. Anal. Appl. 393 (2012) 138–143.pl_PL
dc.referencesA. Bartoszewicz, M. Bienias, M. Filipczak, S. Głąb, Exponential like function method in strong c-algebrability, preprint.pl_PL
dc.referencesA. Bartoszewicz, S. Głąb, Strong algebrability of sets of sequences and functions, Proc. Amer. Math. Soc. 141 (2013), 827–835.pl_PL
dc.referencesA. Bartoszewicz, S. Głąb, A. Paszkiewicz, Large free linear algebras of real and complex functions, Linear Algebra Appl. 438, no. 9 (2013), 3689–3701.pl_PL
dc.referencesA. Bartoszewicz, S. Głąb, D. Pellegrino, J.B. Seoane-Sepúlveda, Algebrability, non-linear properties and special functions, to appear in Proc. Amer. Math. Soc.pl_PL
dc.referencesA. Bartoszewicz, S. Głąb, T. Poreda, On algebrability of nonabsolutely convergent series, Linear Algebra Appl. 435 (2011), 1025–1028.pl_PL
dc.referencesL. Bernal-González, M. O. Cabrera, Spaceability of strict order integrability, J. Math. Anal. Appl. 385 (2012), 303–309.pl_PL
dc.referencesH. Blumberg, New properties of all real functions, Trans. Amer. Math. Soc. 82 (1922), 53–61.pl_PL
dc.referencesA. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Mathematics, Vol. 659, Springer-Verlag, Berlin Heidelberg New York, 1978.pl_PL
dc.referencesJ. L. Gámez-Merino, G. A. Muñoz-Fernández, V. M. Sánchez, J. B. Seoane- Sepúlveda, Sierpiński-Zygmund functions and other problems on lineability, Proc. Amer. Math. Soc. 138 (11) (2010), 3863–3876.pl_PL
dc.referencesJ. L. Gámez-Merino, G. A. Muñoz-Fernández, J. B. Seoane-Sepúlveda, A characterization of continuity revisited, Amer. Math. Monthly 118, no. 2 (2011), 167– 170.pl_PL
dc.referencesJ. L. Gámez-Merino, J. B. Seoane-Sepúlveda, An undecidable case of lineability in RR, J. Math. Anal. Appl. 401, no. 2 (2013), 959–962.pl_PL
dc.referencesF. J. García-Pacheco, N. Palmberg, J. B Seoane-Sepúlveda, Lineability and algebrability of pathological phenomena in analysis, J. Math. Anal. Appl. 326 (2007) 929–939.pl_PL
dc.referencesS. Głąb, P. L. Kaufmann, L. Pellegrini, Spaceability and algebrability of sets of nowhere integrable functions, Proc. Amer. Math. Soc. 141, no. 6 (2013), 2025– 2037.pl_PL
dc.referencesZ. Grande, L. Sołtysik, Some remarks on quasi-continuous real functions, Problemy Mat. 10 (1990), 79–86.pl_PL
dc.referencesV. I. Gurariy, Subspaces and bases in spaces of continuous functions, Dokl. Akad. Nauk SSSR 167 (1966), 971–973 (in Russian).pl_PL
dc.referencesV. I. Gurariy, Linear spaces composed of nondifferentiable functions, C.R. Acad. Bulgarie. Sci. 44 (1991), 13–16.pl_PL
dc.referencesJ. A. Guthrie, J. E. Nymann, The topological structure of the set of subsums of an infinite series, Colloq. Math. 55, no. 2 (1988), 323–327.pl_PL
dc.referencesJ. M. Jastrzębski, J. M. Jędrzejewski, T. Natkaniec, On some subclasses of Darboux functions, Fund. Math. 138, no. 3 (1991), 165–173.pl_PL
dc.referencesP. Jiménez-Rodríguez, G. A. Muñoz-Fernández. J. B. Seoane-Sepúlveda, Non- Lipschitz functions with bounded gradient and related problems, Linear Algebra Appl. 437 (2012), 1174–1181.pl_PL
dc.referencesC. Kuratowski, W. Sierpiński, Sur un probleme de M. Fréchet concernant les dimensions des ensembles lin eaires, Fund. Math. 8 (1926), 192–200.pl_PL
dc.referencesB. Levine, D. Milman, On linear sets in space C consisting of functions of bounded variation, Comm. Inst. Sci. Math. Méc. Univ. Kharkoff [Zapiski Inst. Mat. Mech. 16 (1940), 102–105.pl_PL
dc.referencesA. Maliszewski, On the sums and the products of Darboux cliquish functions, Acta Math. Hung. 73 (1996), 87–95.pl_PL
dc.referencesT. Radaković, Über Darbouxsche und stetige Funktionen, Monatsh. Math. Phys. 38, no. 1 (1931), 117–122.pl_PL
dc.referencesI. Recław, Restrictions to continuous functions and Boolean Algebras, Proc. Amer. Math. Soc. 118.3 (1993), 791–796.pl_PL
dc.referencesJ. Shinoda, Some consequences of Martin’s Axiom and the negation of the Continuum Hypothesis, Nagoya Math. J. 49 (1973), 117–125pl_PL
dc.referencesW. Sierpiński, A. Zygmund, Sur une fonction qui est discontinue sur tout ensemble de puissance du continu, Fund. Math. 4 (1923), 316–318.pl_PL
dc.contributor.authorEmailarturbar@p.lodz.plpl_PL
dc.contributor.authorEmailmarek.bienias88@gmail.compl_PL
dc.contributor.authorEmailszymon.glab@p.lodz.plpl_PL
dc.identifier.doi10.18778/7525-971-1.14


Pliki tej pozycji

Thumbnail
Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe