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14.1 Introduction

The algebraic properties of sets of functions have been investigated in the Real
Analysis for many years. The direction example of such a research is the idea
of finding maximal additive (as well as for other operations: composition, tak-
ing maximum etc.) classes for certain families of functions that has its origin
in the 1930’s (cf. [20], [35]). In the example in [35] it was proved that the max-
imal additive class for Darboux real functions is the class of constant functions
(i.e. for any function f with Darboux property and any constant function c the
function f + c is still Darboux, but for any nonconstant function g there is a
Darboux function fg such that fg + g does not have Darboux property). This
studies are still under investigations (cf. [26], [30], [34]). In the last 10 years
there appeared a new point of looking on the largeness of some sets included
in the functions spaces. For example, for an algebra L, one can call a set A⊆L
big if A∪{0} contains a nice structure inside, i.e. contains a non-trivial vector
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space, an algebra or a closed vector space (if L has a topology). This way of
thinking was coined by V. I. Gurariy (see [27], [28]) but the earliest results in
this area can be found in the classical paper due to B. Levine and D. Milman
from 1940 (cf. [33]). The notion we are presenting here has its origin in the
works of R. M. Aron, V. I. Gurariy, D. Pérez-García, J. B. Seoane-Sepúlveda
(see [5], [6], [7]).

Definition 14.1. Let κ be a cardinal number.

1. Let L be a vector space and a set A ⊆ L. We say that A is κ-lineable if
A∪{0} contains a κ-dimensional vector space;

2. Let L be a Banach space and a set A ⊆ L. We say that A is spaceable if
A∪{0} contains an infinite dimensional closed vector space;

3. Let L be a linear commutative algebra and a set A ⊆ L. We say that A is
κ-algebrable if A∪{0} contains a κ-generated algebra B (i.e. the minimal
system of generators of B has cardinality κ).

Note that any linear space is a free structure in category of vector spaces.
Therefore a κ-lineable set contains a free structure of κ generators. Following
this observation one can ask for existence of free structures inside some set
A∪{0}. A. Bartoszewicz and S. Gła̧b in their work [14] introduced the notion
of strong algebrability.

Definition 14.2. [14] Let κ be a cardinal number. Let L be a linear commuta-
tive algebra and a set A⊆ L. We say that A is strongly κ-algebrable if A∪{0}
contains a κ-generated algebra that is isomorphic with a free algebra (denote
by X = {xα : α < κ} the set of generators of this free algebra).

Remark that the set X = {xα : α < κ} is the set of generators of some free
algebra contained in A∪{0} if and only if the set X̃ of elements of the form
xk1

α1xk2
α2 · · ·x

kn
αn is linearly independent and all linear combinations of elements

from X̃ are in A∪{0}; equivalently for any k ∈ N, any nonzero polynomial P
in k variables without a constant term and any distinct y1, ...,yk ∈ X , we have
P(y1, ...,yk) 6= 0 and P(y1, ...,yk) ∈ A.

The main problem in this area is to consider a subset of RR,CC,RN,CN
consisting of functions or sequences which naturally appears in Analysis that
does not have any linear property (i.e. it is not closed under taking sums) and
construct inside it a vector space, an algebra or a free algebra with a large set
of generators. One can also try to find a natural subset A⊆RR (or CC,RN,CN)
such that inside A∪{0} we cannot construct any nice structure.

Here we give a general overview on this topic presenting some general
methods and recalling recent results. We will focus on the outcomes obtained
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by the authors of this chapter with other coworkers. It should be mentioned
here that recently many other authors have considered and got interesting re-
sults in the algebrability (see [2], [3], [25]).

It is easy to check that for any cardinal number κ the following implications
hold:

κ-strong algebrability⇒ κ-algebrability⇒ κ-lineability.

Moreover, since every infinite dimensional Banach space has a linear base of
cardinality c, then

spaceability⇒ c-lineability.

The following examples show that these implications cannot be reversed.

Example 14.3. c00 (the set of all sequences from c0 that are equal 0 from some
place) is algebrable in c0, but it is not strongly 1-algebrable.

In fact, suppose that c00 contains a free algebra generated by an element x =

(x1, ...,xn,0, ...) ∈ c00. Since x is a generator of a free algebra, the set X̃ = {xn :
n < ω} is linearly independent. In particular, the elements x,x2, ...,xn+1 are
linearly independent but in fact they are elements of Rn, contradiction.

Example 14.4. For an unbounded interval I the set of Riemann integrable func-
tions that are not Lebesgue integrable is lineable but not algebrable (cf. [24]).

Example 14.5. For a sequence x∈ `1, consider a set of all subsums of ∑
∞
n=1 x(n)

defined by
E(x) = {a ∈ R : ∃A⊆N ∑

n∈A
x(n) = a}.

It is known (cf. [29]) that for any x ∈ `1 \ c00 the set E(x) is either a finite
union of closed intervals, or is homeomorphic to the Cantor set, or is home-
omorphic to the M-Cantorval. Hence the set `1 can be decomposed into dis-
joint sets c00 and I,C,MC (consisting of sequences x ∈ `1 \ c00 for which the
set E(x): is a finite union of closed intervals, is homeomorphic to the Cantor
set, is homeomorphic to the M-Cantorval, respectively). In [11] T. Banakh,
A. Bartoszewicz, S. Gła̧b and E. Szymonik proved that the set C is strongly
c-algebrable and comeager but is not spaceable.

Generally, while proving the lineability, algerbability or strong algebrability
of a set A ⊆ L on some level κ (i.e. constructing κ-generated vector space,
algebra or free algebra, where κ is a cardinal number) we have to show the
existence of κ independent generators in A. However the upper bound for the
maximal level of lineability, algerbability or strong algebrability is given by
card(L). Hence the main aim is to prove this property on the maximal possible
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level. Usually this level is at 2c or c. All of the presented constructions and
methods are valid in ZFC.

14.2 Notation

We will use the standard set-theoretical notation. In the sequel we will consider
the following classes of functions.

Definition 14.6. A function f :K→K is called:

1. Everywhere surjective ( f ∈ ES(K)) if f (I) =K, for every nonempty open
set I;

2. Strongly everywhere surjective ( f ∈SES(K)) if it takes every value c times
on every nonempty open set (i.e. for every y∈K and every nonempty open
set I the set {x ∈ I : f (x) = y} has cardinality c);

3. Perfectly everywhere surjective ( f ∈ PES(K)) if f (P) =K, for every per-
fect set P⊆K;

4. Everywhere discontinuous Darboux ( f ∈ EDD(K)) if it is nowhere con-
tinuous and has the Darboux property (i.e. it maps connected sets to con-
nected sets);

5. Everywhere discontinuous with finite range ( f ∈ EDF(K)) if it is nowhere
continuous and has finitely many values;

6. Everywhere discontinuous compact to compact ( f ∈ EDC(K)) if it is
nowhere continuous and maps compact sets to compact sets.

Observe here that the choice of the set K (R or C) has an influence on
possible results in algebrability. In particular one can easy check that the set
PES(R) cannot be algebrable. Indeed, for any function f ∈PES(R) the func-
tion f 2 /∈PES(R) since it takes only nonnegative real values, hence cannot be
onto R. The similar argument works in the case of conditionally convergent
series in R (considered with point-wise product). On the other hand the set
PES(C) and the family of all conditionally convergent series inC are strongly
2c-algebrable and strongly c-algebrable, respectively (for details see the proof
of Theorem 14.22 and [17]).

Everywhere surjective functions have been considered in the context of al-
gebrability by many authors (see [1], [4], [7], [21]). Let us point out that any
function f ∈ PES(K) has the property that a preimage of any singleton by f
is a Bernstein set, hence f is nonmeasurable in many senses.

There is a nice observation that f : R→ R is continuous if and only if f
maps compact sets to compact sets and f has Darboux property. This was
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proved and generalized by many authors (see [10] and references therein). It is
clear that neither Darboux property nor mapping compact sets to compact sets
does not imply continuity by itself. Furthermore, there are nowhere continuous
functions which are Dabroux and nowhere continuous functions which map
compact sets to compact sets. The study of these families of functions in the
context of lineability was initiated in [22] where 2c-lineability of family of
compact to compact functions was established.

14.3 Sierpiński-Zygmund functions

In this section we will consider a type of functions that firstly appeared
in 1920’s (see [38]). The classical Luzin’s Theorem implies that for every
Lebesgue measurable function f : R→ R there is a set S ⊆ R with infinite
measure such that f |S is continuous. In 1922 (see [19]) H. Blumberg showed
that if we omit the assumption that f :R→R is measurable, then some weaker
version of the assertion of the Luzin’s Theorem remains true. More precisely
H. Blumberg proved the following.

Theorem 14.7 ([19]). Let f :R→R be an arbitrary function, then there exists
a dense subset S⊆ R such that f |S is continuous.

In the proof the set S was countable so naturally one can ask if the set S can
be uncountable. The partial answer to this was given by W. Sierpiński and A.
Zygmund in [38].

Theorem 14.8 ([38]). There exists a function f : R→ R such that for any set
Z ⊆ R of cardinality c the restriction f |Z is not a Borel map.

Obviously under (CH) the restriction of this function to any uncountable set
cannot be continuous. J. Shinoda (see [37]) proved that with (MA)+¬(CH)

for every function f : R→ R there exists an uncountable set Z ⊆ R such that
f |Z is continuous. On the other hand Gruenhage proved that there is a model
of ZFC in which c > ω1 and there is a function f such that f |Z is not Borel
for any uncountable set Z ⊆ R (for details see [36]). By classical theorems of
Luzin and Nikodym, a function from Theorem 14.8 is nonmeasurable and does
not have Baire property. Moreover, although it is possible to construct it to be
injective, it is nowhere monotone in the sense that its restriction to any set of
cardinality c is not monotone. Let us introduce the following notion.

Definition 14.9. We say that a function f : K → K is Sierpiński-Zygmund
function if for every set A ⊆ K of cardinality c, the restriction f |A is not a
Borel map.
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The set of all Sierpiński-Zygmund functions f : R → R (denote it by
SZ(R)) was firstly considered, in the context of algebrability, by J. L. Gámez-
Merino, G. A. Munoz-Fernández, V. M. Sánchez and J. B. Seoane-Sepúlveda
in [21]. The authors proved that this set is c+-lineable and, also, c-algebrable.
This was the motivation to ask a question if one can prove 2c-algebrability
of the set SZ(R) in ZFC. Here we recall a result due to A. Bartoszewicz,
S. Gła̧b, D. Pellegrino and J. B. Seoane-Sepúlveda (cf. [16]). Before stating it
let us recall the following notion.

Definition 14.10. Let κ be an infinite cardinal number. Let A and B be any sub-
sets of R with cardinality κ . We say that A and B are almost disjoint provided
that card(A∩B)< κ.

The existence of 2c pairwise almost disjoint subsets, of size c, of R follows,
for example, from (CH) or from (MA). It is also known that in ZFC in every
set of cardinality κ there is an almost disjoint family (a family consisting of
pairwise almost disjoint sets) of cardinality κ+.

The main result in this context from [16] is the following.

Theorem 14.11. The set SZ(R) is strongly κ-algebrable, provided there exists
an almost disjoint family in R of cardinality κ. Moreover, card(SZ(R)) = 2c.

Before proving the Theorem 14.11 let us state a useful lemma.

Lemma 14.12 ([16]). Let P be a family of nonzero polynomials without con-
stant term and X be a subset of R, both of cardinality less than c. Then there
exists a set Y = {yξ : ξ < c}, of cardinality c, such that P(yξ1 , ...,yξn) /∈ X , for
any polynomial P ∈ P in n variables and any distinct ξ1 < ... < ξn < c.

Now we are able to prove Theorem 14.11.

Proof. Let {gα : α < c} be a numeration of all Borel functions, {xα : α < c}
a numeration of R and {Pα : α < c} a numeration of all nonzero polynomi-
als without constant term. Let us inductively define a family {Yα : α < c}
of subsets of R with cardinality c, by putting at the step α < c as Yα the
set which existence implies Lemma 14.12 used for X = {gλ (xα) : λ ≤ α}
and P = {Pλ : λ ≤ α}. For each α < c consider a numeration Yα = {yα

ξ
:

ξ < c}. Note that Y = ∏α<cYα ⊆ SZ(R). Thus card(SZ(R)) = 2c. Let
{Nζ : ζ < κ} be an almost disjoint family in c with each member of cardi-
nality c. For any ζ < κ let {ζ (ξ ) : ξ < c} be an increasing numeration of
Nζ and define fζ : R→ R by the formula fζ (xα) = yα

ζ (α)
. We will show that

{ fζ : ζ < κ} is a set of generators and generates a subalgebra of SZ(R).
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Let P be a nonzero polymonial in n variables without a constant term (let
P = Pβ ). Take ζ1 < ... < ζn < κ, a Borel function gγ and let Z ⊆ R be a set
of cardinality c. Consequently, Z′ = Z \ {xα : α ≤ max{β ,γ}} also has car-
dinality c. Since card(Nζk

∩Nζl
) < c for any distinct k, l ∈ {1, ...,n}, there is

α ∈ c \
(⋃

k 6=l Nζk
∩Nζl

)
and xα ∈ Z′. Hence fζ1(xα), ..., fζn(xα) ∈ Yα are dis-

tinct. Since α > γ and α > β , P( fζ1 , ..., fζn) is different from gγ at the point
xα . Therefore P( fζ1 , ..., fζn) is a Sierpiński-Zygmund function. ut

Notice here also a simple observation.

Remark 14.13. Any additive group A ⊆ SZ(R)∪{0} of cardinality κ gen-
erates an almost disjoint family in the plane R×R (by considering graphs of
f ∈ A as members of this family).

Hence the result described above and obtained by A. Bartoszewicz, S. Gła̧b,
D. Pellegrino and J. B. Seoane-Sepúlveda with strong algebrability on the level
of cardinality of maximal almost disjoint family in c is the best possible in that
case. J. L. Gámez-Merino, J. B. Seoane-Sepúlveda noted in [23] that "κ = 2c"
is independent with ZFC. This implies that the sentence "SZ(R) is strongly
card(SZ(R))-algebrable (lineable)" is independent with ZFC. Moreover, it
was the first time, when strong algebrability was proved in ZFC on the level
higher than c (since in ZFC there is an almost disjoint family of cardinality
c+). So the considerations took the authors to the question if there exists a free
algebra of 2c generators in RR or CC. The answer to this was given by A.
Bartoszewicz, S. Gła̧b and A. Paszkiewicz in their work [15]. We will come
back to this in the Section Method of large free algebras.

14.4 Some general methods in algebrability and strong
algebrability

We will recall some general methods of constructing algebras and free algebras
of real and complex functions.

14.4.1 Independent Bernstein sets

The following general construction was described by A. Bartoszewicz, M. Bie-
nias and S. Gła̧b in [12] but firstly was used by A. Bartoszewicz, S. Gła̧b,
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D. Pellegrino and J. B. Seoane-Sepúlveda in [16] in the proof of 2c-algebrability
of the set PES(C). Let us recall the idea of the method.

For a nonempty set X and A ⊆ X let us denote A0 = X\A and A1 = A. We
name a familyA to be B-independent (where B be is a family of subsets of X)
if Aε1

1 ∩ ...∩Aεn
n ∈ B for any distinct Ai ∈ A, any εi ∈ {0,1} for i ∈ {1, ...,n}

and n ∈ N. We say that A is independent if it is P(X)\{ /0}-independent.
Well known theorem of Fichtenholz and Kantorovich (generalized to the

case of any complete Boolean algebra, by B. Balcar and F. Franěk in [9]) says
that for any infinite set of cardinality κ there is an independent family of 2κ

subsets of this set. Let us recall the well known definition of a Bernstein set.

Definition 14.14. A subset B of a Polish space is called a Bernstein set if
B∩ P 6= /0 6= B0 ∩ P for every perfect subset P. Denote by B the family of
all Bernstein sets.

We say that a family A is an independent family of Bernstein sets pro-
vided that A ⊆ B and A is B-independent. Our aim is to construct an inde-
pendent family of Bernstein sets of cardinality 2c. Repeating the idea from
[12] consider the decomposition of R into c pairwise disjoint Bernstein sets
{Bα : α < c}. It is easy to check that for any s⊆ c with s 6= /0 and c\s 6= /0, the
set
⋃

α∈s Bα is Bernstein. Let {Nξ : ξ < 2c} be an independent family in c such
that for every ξ1 < ... < ξn < 2c and for any εi ∈ {0,1} (i ∈ {1, ...,n}), the set
Nε1

ξ1
∩ ...∩Nεn

ξn
has cardinality c. To construct the desired family of Bernstein

sets let us put Bξ =
⋃

α∈Nξ
Bα , for ξ < 2c. Then every set Bξ is Bernstein. Note

that for every ξ1 < ... < ξn < 2c and any εi ∈ {0,1} for i ∈ {1, ...,n} the set

(Bξ1)ε1 ∩ ...∩ (Bξn)εn =
⋃

α∈Nε1
ξ1
∩...∩Nεn

ξn

Bα

is Bernstein, too. That means {Bξ : ξ < 2c} is an independent family of Bern-
stein sets.

Having the independent family of Bernstein sets, we can define 2c linearly
independent functions: for α < c, let gα : Bα →C (or R) be a nonzero function
defined on a Bernstein set Bα (where {Bα : α < c} is the decomposition of R
into pairwise disjoint Bernstein sets). Then for every ξ < 2c let us put

fξ (x) =

{
gα(x) , if x ∈ Bα and α ∈ Nξ ;

0 , otherwise.

Then the family { fξ : ξ < 2c} is linearly independent. Finally (cf. [12]) by
spanning the algebra by the functions { fξ : ξ < 2c} we obtain an algebra
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of 2c generators. It is worth mentioning here that the independent Bern-
stein sets method cannot be used to prove strong 2c-algebrability. Indeed,
one can consider a nonzero polynomial P(x1, ...,xn) = ∏k 6=l(xk− xl)∏k xk, for
which, for any collection of functions fξ1 , ..., fξn , of the above type, we have
P( fξ1 , ..., fξn) = 0. Hence, an algebra spanned by { fξ : ξ < 2c} is not a free
algebra.

Using the method described above it is possible to get the 2c-algebrability
of several families of functions in RR or CC, namely PES(C),SES(C) \
PES(C),EDD(R). To present this method let us establish the following

Theorem 14.15. The set EDF(R) is 2c-algebrable.

Proof. Consider an independent family of Bernstein sets {Bξ : ξ < 2c}. For
ξ < 2c let fξ be the characteristic function of the set Bξ . We will show that
the family { fξ : ξ < 2c} ⊆ EDF(R) generates an algebra in EDF(R). Let
P be any nonzero polynomial in n variables without a constant term and let
ξ1 < ξ2 < ... < ξn < 2c. Suppose P( fξ1 , ..., fξn) is nonzero. Notice that each fξi

is constant on every set of the form (Bξ1)ε1 ∩ ...∩ (Bξn)εn so is P( fξ1 , ..., fξn).

Since P( fξ1 , ..., fξn) is nonzero, there are εi ∈ {0,1} for i ∈ {1, ...,n} such that
P( fξ1 , ..., fξn)|(Bξ1 )ε1∩...∩(Bξn )εn 6= 0. Clearly P( fξ1 , ..., fξn)|(Bξ1 )0∩...∩(Bξn )0 = 0.
Therefore, P( fξ1 , ..., fξn) is everywhere discontinuous (the set of the type
(Bξ1)ε1 ∩ ... ∩ (Bξn)εn is Bernstein so it is dense). Hence EDF(R) is
2c-algebrable. ut

By similar argument as in Example 14.3, it is easy to see that the set
EDF(R) is not even strongly 1-algebrable. Since finite sets are compact, we
have that EDF(R)⊆ EDC(R), therefore the following holds.

Corollary 14.16. The set EDC(R) is 2c-algebrable.

One can ask if this result can be strengthen. The answer is: it cannot.
T. Banakh, A. Bartoszewicz, M. Bienias and S. Gła̧b proved in [10] that
any compact-preserving nowhere continuous function f cannot take infinitely
many values on every interval. So for any function f ∈ EDC(R) there is an
interval I, such that f (I) is finite. And again the same argument as in Example
14.3 shows that this set cannot be even strongly 1-algebrable. Hence EDC(R)
is not strongly κ-algebrable for any cardinal κ > 0. Therefore, the result from
Corollary 14.16 is the best possible in the sense of algebrability.
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14.4.2 The method of large free algebras

Let us come back to the question (from the Section Sierpiński-Zygmund func-
tions): does there exist a free algebra of 2c generators in RR or CC? The
positive answer to this question was given by A. Bartoszewicz, S. Gła̧b and
A. Paszkiewicz in their work [15]. Moreover, they described a new general
method of proving the strong 2c-algebrability, that was very useful in improv-
ing some results to the highest possible level. Here we recall some of their
results. Let us start with the answer.

Theorem 14.17. Let X be an infinite set of cardinality κ with κω = κ. Let I be
a subset of K with a nonempty interior. Then there exists a free linear subal-
gebra of KX with 2κ generators { fξ : ξ < 2κ}, such that P( fξ1 , ..., fξk

) maps
X onto P(Ik) for every nonzero polynomial P in k variables without constant
term, any ξ1, ...,ξk < 2κ and any k ∈ N.

For the reader’s convenience we give a sketch of their proof.

Proof. Let Y = ([0,1]×κ)N and let {Aξ : ξ < 2κ} be an independent family
of subsets of κ. For each ξ < 2κ let us define a function f̄ξ : Y → [0,1] by a
formula

f̄ξ (t1,y1, t2,y2, ...) =
∞

∏
n=1

t
χA

ξ
(yn)

n ,

where tn ∈ [0,1],yn ∈ κ and χA stands for the characteristic function of a set
A (assume here that 00 = 1). The condition κω = κ implies that κ ≥ c so
card(Y ) = card(X). I has nonempty interior, therefore card(I) = c and there
are bijections φ : X → Y and ψ : [0,1]→ I. Let fξ = ψ ◦ f̄ξ ◦ φ : X → K for
ξ < 2κ . Then { fξ : ξ < 2κ} is a set of free generators in KX . Indeed, take any
ξ1 < ... < ξk < 2κ . Let

Y0 =
{
(t1,y1, t2,y2, ...) ∈ Y : t1, ..., tk ∈ [0,1], ti =

1
2

for i > k,

yi ∈ Aξi \
⋃
j 6=i

Aξ j for i≤ k and yi ∈
⋂

j

A0
ξ j

for i > k
}
.

Consider a nonzero polynomial P in k variables without a constant term. Let
x = φ(t1,y1, t2,y2, ...) ∈ X0 = φ−1(Y0). Then

P( fξ1 , ..., fξk
)(x) = P(ψ ◦ ¯fξ1 , ...,ψ ◦ ¯fξk

)(φ(x)) = P(ψ(t1), ...,ψ(tk)).
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Notice here that φ |X0 is onto I. Since I has a nonempty interior, P is nonzero
on Ik. Therefore, P( fξ1 , ..., fξk

) is nonzero on X0, so it is on X . To finish the
proof observe that each function fξ is onto I. ut

Let us introduce a notion that generalizes the notion of strongly everywhere
surjective functions (cf. [15]).

Definition 14.18. [15] LetF ⊆P(X) and I⊆K. We say that a function f ∈KX

is I-strongly everywhere surjective with respect to F (in short f ∈ SES(I,F)),
if for every F ∈ F there are k ∈ N and polynomial P in k variables without
constant term such that f (F) = P(Ik) and card({x ∈ F : f (x) = y}) = card(X)

for every y ∈ f (F).

In particular we have that:

• for a family F consisting of all nonempty open subsets of C, the set
SES(C,F) is the set of all strongly everywhere surjective complex func-
tions;

• for a family F consisting of all nonempty perfect subsets of C, the set
SES(C,F) is the set of all perfectly everywhere surjective complex func-
tions.

A. Bartoszewicz, S. Gła̧b and A. Paszkiewicz proved the strong algebrability
of SES(I,F) for some families F of subsets of X and I ⊆K. They were using
a classical result due to Kuratowski and Sierpiński (see [32]).

Proposition 14.19. (Disjoint Refinement Lemma) Let κ ≥ ω. For any family
{Pα : α < κ} of sets of cardinality κ there is a family {Qα : α < κ}, such that
for every distinct α,β < κ

• Qα ⊆ Pα ;
• Qα ∩Qβ = /0.

The family {Qα : α < κ} is called a disjoint refinement of the family
{Pα : α < κ}.

Thanks to Disjoint Refinement Lemma and existence of a large free subal-
gebra in RX ,CX , the authors obtained the following general result.

Theorem 14.20 ([15]). Let X be an infinite set of cardinality κ with κω = κ.

Let I be a subset of K with a nonempty interior and F ⊆ P(X). Assume that
card(F) ≤ κ and card(F) = κ for every F ∈ F . Then the set SES(I,F) is
strongly 2κ -algebrable.
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Proof. Consider a numeration {Fα : α < κ} of F , such that each set F occurs
κ times. Let {Qα : α < κ} be its disjoint refinement. Without loss of generality,
we may assume that

⋃
α<κ Qα = X . By Theorem 14.17 for every α < κ there

is a free algebra Aα of surjections from Qα onto I with 2κ generators.{ f α

ξ
:

ξ < 2κ}. Define for ξ < 2κ the function fξ (x) = f α

ξ
, for x ∈ Qα . Let A be

an algebra generated by { fξ : ξ < 2κ}, then A is a free algebra contained in
SES(I,F)∪{0}. ut

Similar proof as that of Theorem 14.20 can be applied to get the following
result.

Theorem 14.21 ([15]). Let X be an infinite set of cardinality κ with κω = κ.

Let I be a subset of K with a nonempty interior and Fi ⊆ P(X), for i = 1,2.
Assume that card(Fi)≤ κ and card(F) = κ for every F ∈Fi, i = 1,2. Suppose
that there is a set F2 ∈F2, such that for every F1 ∈F1 we have card(F1 \F2) =

κ. Then the family SES(I,F1)\SES(I,F2) is strongly 2κ -algebrable.

Using the method described above it is possible to improve some known
results (cf. Section Independent Bernstein sets).

Theorem 14.22 ([15]). The sets PES(C), SES(C) \PES(C) and EDD(R)
are strongly 2c-algebrable.

Proof. We will show that the set PES(C) is strongly 2c-algebrable. Firstly
notice that cω = c and consider the family F of all nonempty perfect sets in C.
Then it is clear that card(F) = c and by Theorem 14.20 we get the result.

We will show that the set SES(C)\PES(C) is strongly 2c-algebrable. Let
F1 stands for the family of all nonempty open subsets of C and F2 stands for
the family of all nonempty perfect subsets of C. Fix a nowhere dense perfect
set P ∈ F2. Then it is easy to see that for any U ∈ F1, we have that U \P is
nonempty and open, so it is of cardinality c. By the Theorem 14.21 we get the
result.

To prove strong 2c-algebrability of EDD(R), take F as a family of all per-
fect sets and consider SES([0,1],F). ut

Theorem 14.22 closes considerations of the classes PES(C), SES(C) \
PES(C),EDD(R), since the result is the best possible in the notion of alge-
brability.

We will present also another result from [15]. It is well known that any
real function is continuous on a Gδ set. Many authors considered algebrability
of sets of functions with predescribed set of continuity points. F. J. García-
Pacheco, N. Palmberg and J. B. Seoane-Sepúlveda proved ω-lineability of the
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set of functions with finite number of continuity points (see [24]). Moreover,
A. Aizpuru, C. Pérez-Eslava, F. J. García-Pacheco and J. B. Seoane-Sepúlveda
in [1] established that a set of functions with a fixed open set of continuity
points is ω-lineable. Recently A. Bartoszewicz, M. Bienias and S. Gła̧b proved
2c-algebrability of the set of functions whose continuity points is a fixed closed
set (see [12]). Let G ⊆ R be a Gδ set and consider the set CG of all functions
f : R→ R, for which the set of continuity points is exactly G.

Let us introduce the following notion.

Definition 14.23. We say that a set A ⊆ R is c-dense in itself if for any open
interval I we have either I∩A = /0 or card(I∩A) = c.

Recall (cf. [15]) a property of c-dense in itself sets.

Lemma 14.24. Let F be non closed c-dense in itself Fσ set. Then there are
perfect sets {Cn : n ∈ N} such that F =

⋃
n∈NCn and Cn+1 \Cn is c-dense in

itself for any n ∈ N.

A. Bartoszewicz, S. Gła̧b and A. Paszkiewicz obtained the following char-
acterization.

Theorem 14.25. The following conditions are equivalent:

(i) CG is strongly 2c-algebrable;
(ii) CG is c+-lineable;
(iii) R\G is c-dense in itself.

Proof. The implication (i)⇒ (ii) is obvious.
The implication (ii)⇒ (iii): suppose that R\G is not c-dense in itself, so there
is an open interval I such that 0 < card(I \G)≤ω (since the set I \G is Borel).
Any function f : I→R which set of continuity points is exactly G∩ I is of the
form f = f |G∩I ∪ f |I\G. Since there are exactly c continuous functions from
G∩ I to R, at most c functions from I \G to R and there are exactly c many
functions f : I→R which set of continuity points is G∩ I. By the assumption,
let { fξ : ξ < c+} be a basis of linear subspace of CG. By the above observation
there are ξ1,ξ2 < c+, such that fξ1 |I = fξ2 |I. But then fξ1 − fξ2 = 0, so it is
continuous on I. On the other hand, fξ1 − fξ2 ∈ CG and I \G 6= /0 so we obtain
a contradiction.
The implication (iii)⇒ (i): notice that any c-dense in itself set is dense in
itself. Consider the following cases.

Assume that R\G is closed, hence perfect. Since R\G is c-dense in itself,
for any open set U ⊆ R, the set U ∩ (R \G) is either empty or of cardinality
c. Let F = {U ∩ (R\G) : U is an open set and U ∩ (R\G) 6= /0}. By Theorem
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14.20 there exists a free linear algebra A ⊆ SES(R,F) with the set of gener-
ators { f ′

ξ
: ξ < 2c} being surjections from R \G onto R. Define for ξ < 2c a

function

fξ (x) =

{
f ′
ξ
(x) , if x ∈ R\G;

0 , if x ∈ G.
.

It is easy to see that the set { fξ : ξ < 2c} generates a free subalgebra of CG.

Assume that R \G is not closed. By Lemma 14.24 there exists a sequence
of perfect sets {Cn : n ∈N} such that C1 and Cn+1 \Cn are c-dense in itself and
R\G =

⋃
n∈NCn. Let

Fn = {U ∩Cn \Cn−1 : U is an open set and U ∩Cn \Cn−1 6= /0}

for n ∈ N, where C0 = /0. By Theorem 14.20 there exist free linear algebras
An ⊆SES([0, 1

n ],Fn) with the set of generators { f n
ξ

: ξ < 2c} being surjections
from Cn \Cn−1 onto [0, 1

n ]. Define for ξ < 2c a function

fξ (x) =

{
f n
ξ
(x) , if x ∈Cn \Cn−1;

0 , if x ∈ G.
.

We will show that the set { fξ : ξ < 2c} spans a free algebra A contained in
CG. Let f ∈ A, then there is a nonzero polynomial P in k variables without a
constant term and ξ1 < ... < ξk < 2c with f = P( fξ1 , ..., fξk

). Observe that for
any n ∈ N we have f |Cn\Cn−1 ∈ An, so f maps every nonempty open subset of
Cn \Cn−1 onto P([0, 1

n ]
k). Therefore f is discontinuous at each point of Cn \

Cn−1. Hence, take a point x ∈ G. If x is in the interior of G, then obviously
f is continuous at x (since it is constant and equal to 0). So, assume that x is
not in the interior of G, then there is a sequence (xm)m∈N of elements of R\G
convergent to x. Since xm /∈ G so there is lm ∈ N with xm ∈ Clm . Notice that
(lm)m∈N tends to infinity. Since f (xm) ∈ P([0, 1

lm
]k) so f (xm)→ 0 = f (x). ut

By the power of the above Theorem, the authors of [15] left only one ques-
tion connected with the algebrability of the set CG: is the set CG (independently
with the set G) algebrable on the level of c? In the next section we will describe
another general method that will imply a possitive answer to this.
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14.4.3 Exponential like functions method

The idea of using exponential functions, for the first time, appeared in the pa-
pers of L. Bernal-González, M. O. Cabrera, P. Jiménez-Rodríguez, G. A. Muñoz-
Fernández and J. B. Seoane-Sepúlveda (see [18], [31]). The concept was the
following: consider a set H = {rξ : ξ < c} ⊆ R and construct from one func-
tion F (of a certain type) a linearly independent set {exp(rξ x)F(x) : ξ < c}
which will generate a vector space.

Recently the following method has been invented by M. Balcerzak, A. Bar-
toszewicz and M. Filipczak in [8]. Here we present their idea.

Let us introduce the following notion.

Definition 14.26. [8] We say that a function f : R→ R is exponential like (of
range m) whenever for x ∈ R

f (x) =
m

∑
i=1

aieβix,

for some distinct nonzero real numbers β1, ...,βm and some nonzero real num-
bers a1, ...,am. We will also consider exponential like functions (of the same
form) with the domain [0,1].

Observe here a simple property of exponential like functions.

Lemma 14.27. For every positive integer m, any exponential like function
f : [0,1]→ R of a range m, and each c ∈ R, the preimage f−1[{c}] has at
most m elements. Consequently, f is not constant in every subinterval of [0,1].

The criterion of strong c-algebrability is the following. This should be com-
pared with a similar idea applied in [17], [8], [11].

Theorem 14.28 ([8]). Let F ⊆ R[0,1] and assume that there exists a function
F ∈F such that f ◦F ∈F \{0} for every exponential like function f :R→R.
Then F is strongly c-algebrable. More exactly, if H ⊆R is a set of cardinality c
and linearly independent over the rationals Q, then exp◦(rF), r ∈ H, are free
generators of an algebra contained in F ∪{0}.

Proof. Let H be a set linearly independent over Q and of cardinality c. By
the assumption we have that {exp◦(rF) : r ∈ H} ⊆ F . To show that it is
a set of free generators consider any n ∈ N and a nonzero polynomial P
in n variables without a constant term. The function given by [0,1] 3 x 7→
P(er1F(x),er2F(x), ...,ernF(x)) is of the form
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m

∑
i=1

ai

(
er1F(x)

)ki1
(

er2F(x)
)ki2

...
(

ernF(x)
)kin

=
m

∑
i=1

ai exp

(
F(x)

n

∑
j=1

r jki j

)
,

where a1, ...,am are nonzero real numbers and the matrix [ki j]i≤m, j≤n has dis-
tinct nonzero rows, with ki j ∈ {0,1,2, ...}. Since the function

t 7→
m

∑
i=1

ai exp(t
n

∑
j=1

r jki j)

is exponential like, the function [0,1] 3 x 7→ P(er1F(x),er2F(x), ...,ernF(x)) is in
F \{0}. ut

Using this method, we can formulate the answer to the question from the
previous section. In the paper [15] the authors constructed the following func-
tion.

Proposition 14.29. Let G⊆ [0,1] be a Gδ set. Consider the set CG of all func-
tions f : [0,1]→ R which set of continuity points is exactly G. There exists a
function F ∈ CG, such that it has infinitely many limit points at each point of
its discontinuity .

Now we may apply Theorem 14.28.

Theorem 14.30. The set CG is strongly c-algebrable.

Proof. Let G⊆ [0,1] be a Gδ set and F ∈ CG be a function like in Proposition
14.29. We will show that for any range m∈N and any exponential like function
f : [0,1]→R of the range m, we have f ◦F ∈ CG \{0}. Let m ∈N and f be an
exponential like function of the range m. Take a point x ∈ [0,1]. We have the
following:

1. If F is continuous at x then clearly f ◦F is also continuous at x;
2. If F is not continuous at x then there are sequences (cf. Proposition 14.29)

(t(k)n )n∈N for k ∈ {1, ...,m + 1} such that for all k we have t(k)n → x and
F(t(k)n )→ y(k) with y(k) 6= y(l) for k 6= l. Then f ◦F(t(k)n )→ f (y(k)). By the
Lemma 14.27 we have f (y(k)) 6= f (y(l)) for some k 6= l, so f ◦F is not con-
tinuous at x.

Hence, for every exponential like function f we have f ◦F ∈ CG \ {0}, so by
Theorem 14.28 we get a strong c-algebrability of CG. ut

Moreover, using the exponential like functions method, we can obtain the
following.
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Theorem 14.31. The sets of

• differentiable functions on R that are nowhere monotone;
• continuous functions on R that are nowhere differentiable;
• Baire class one functions on R that does not have the Darboux property;
• Baire class α functions on R that are not Baire class β with β < α

are strongly c-algebrable.

The exponential like functions method has numerous applications in func-
tions and sequences spaces. The work on this is still in progress, and it will be
contained in the paper [13].

Looking at Theorem 14.28 one can ask: is it true that if a set F is strongly
c-algebrable, then there is a function F ∈ F with the property f ◦F ∈ F \{0}
for every exponential like function f .

It turns out that the answer is negative.

Example 14.32. Consider a setK⊆RR of all smooth functions f :R→Rwith
compact support. Let

F(x) =

{
exp 1

1−x2 , if |x|< 1;

0, elsewhere.
.

Clearly F ∈ K. Let H be a set of cardinality c linearly independent over Q. It
is rather easy to see that {F(x)exp(rx) : r ∈ H} generates a free subalgebra
of K. Hence K is strongly c-algebrable. On the other hand, for an exponential
like function f (x) = exp(x) and any G ∈ K, we have 0 6= f ◦G /∈ K (since it
has a full support, in particular non compact). So the method from Theorem
14.28 does not work in that case.

14.5 Some open problems

Let us propose some open questions connected with algebrability.

Problem 14.33. 1. Is the set ES(R)\SES(R) 2c-lineable (cf. [21])?
2. Is the set ES(C)\SES(C) strongly 2c-algebrable (cf. [21])?
3. Are there natural classes F of functions in RR other than SZ(R) such that

the sentence: "F is card(F)-algebrable" is undecidable in ZFC?
4. We would like to know if Theorem 14.22 can be improved in the following

way. Is it true that there is a family { fα : α < 2c} ⊆ PES(C) such that for
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any α1 < ... < αn and any entire function G :Cn→C (entire means analytic
on the whole domain) we have G( fα1 , ..., fαn) ∈ PES(C)?
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[38] W. Sierpiński, A. Zygmund, Sur une fonction qui est discontinue sur tout ensem-
ble de puissance du continu, Fund. Math. 4 (1923), 316–318.



232 Artur Bartoszewicz, Marek Bienias, Szymon Gła̧b

ARTUR BARTOSZEWICZ

Institute of Mathematics, Łódź University of Technology
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