Show simple item record

dc.contributor.authorBernardelli, Michał
dc.date.accessioned2018-10-08T13:33:22Z
dc.date.available2018-10-08T13:33:22Z
dc.date.issued2018
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/25924
dc.description.abstractThe assessment of dependence between time series is a common dilemma, which is often solved by the use of the Pearson’s correlation coefficient. Unfortunately, sometimes, the results may be highly misleading. In this paper, an alternative measure is presented. It is based on hidden Markov models and Viterbi paths. The proposed method is in no way universal but seems to provide quite an accurate image of the similarities between time series, by disclosing the periods of convergence and divergence. The usefulness of this new measure is verified by specially crafted examples and real‑life macroeconomic data. There are some definite advantages to this method: the weak assumptions of applicability, ease of interpretation of the results, possibility of easy generalization, and high effectiveness in assessing the dependence of different time series of an economic nature. It should not be treated as a substitute for the Pearson’s correlation, but rather as a complementary method of dependence measure.en_GB
dc.description.abstractOcena zależności między szeregami czasowymi jest zagadnieniem, które jest często rozwiązywane za pomocą współczynnika korelacji Pearsona. Niestety, czasami wyniki mogą być bardzo mylące. W artykule przedstawiono alternatywną miarę badania zależności, opartą na ukrytych modelach Markowa oraz ścieżkach Viterbiego. Zaproponowana metoda nie jest uniwersalna, ale wydaje się dość dokładnie odzwierciedlać podobieństwo między szeregami czasowymi, eksponując okresy zbieżności i rozbieżności. Przydatność tej nowej miary została zweryfikowana na przykładach, jak również realnych danych makroekonomicznych. Zaletami tej metody są: słabe założenia stosowalności, łatwość interpretacji wyników, możliwość generalizacji i wysoka skuteczność w ocenie zależności różnych szeregów czasowych o charakterze ekonomicznym. Nie należy jej jednak trakto­wać jako substytutu korelacji Pearsona, a raczej jako uzupełniającą metodę pomiaru zależności.pl_PL
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;338; 338
dc.subjectdependence measureen_GB
dc.subjectcorrelationen_GB
dc.subjecthidden Markov modelen_GB
dc.subjectViterbi pathen_GB
dc.subjectmiara zależnościpl_PL
dc.subjectkorelacjapl_PL
dc.subjectukryty model Markowapl_PL
dc.subjectścieżka Viterbiegopl_PL
dc.titleHidden Markov Models as a Tool for the Assessment of Dependence of Phenomena of Economic Natureen_GB
dc.title.alternativeUkryte modele Markowa jako narzędzie oceny zależności zjawisk o charakterze ekonomicznympl_PL
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2018; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2018en_GB
dc.page.number7-20
dc.contributor.authorAffiliationWarsaw School of Economics, College of Economic Analysis, Institute of Econometrics
dc.identifier.eissn2353-7663
dc.referencesBaum L.E., Petrie T., Soules G., Weiss N. (1870), A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains, “The Annals of Mathematical Statistics”, vol. 41, no. 1, pp. 164–171.pl_PL
dc.referencesBernardelli M. (2013), Non‑classical Markov Models in the Analysis of Business Cycles in Poland, “Annals the Collegium of Economic Analysis”, vol. 30, pp. 59–74.pl_PL
dc.referencesCappé O., Moulines E., Rydén T. (2005), Inference in Hidden Markov Models, Springer Series in Statistics, Springer‑Verlag, New York.pl_PL
dc.referencesDhrymes P.J. (1997), Time Series, Unit Roots, and Cointegration, Academic Press, San Diego.pl_PL
dc.referencesGuilford J.P. (1956), Fundamental statistics in psychology and education, McGraw‑Hill, New York.pl_PL
dc.referencesHamilton J.D. (1989), A New Approach to the Economic Analysis of Non‑stationary Time Series and Business Cycle, “Econometrica”, no. 57, pp. 357–384.pl_PL
dc.referencesJoe H. (1997), Multivariate Models and Dependence Concepts, Monographs in Statistics and Applied Probability (Book 73), Chapman and Hall, London.pl_PL
dc.referencesKendall M.G., Stuart A. (1973), The Advanced Theory of Statistics, vol. 2: Inference and Relationship, Griffin, New York.pl_PL
dc.referencesLhermitte S., Verbesselt J., Verstraeten W.W., Coppin P. (2011), A comparison of time series similarity measures for classification and change detection of ecosystem dynamics, “Remote Sensing of Environment”, vol. 115(12), pp. 3129–3152.pl_PL
dc.referencesMaddala G.S., Kim I. (1998), Unit Roots, Cointegration, and Structural Change, Cambridge University Press, Cambridge, pp. 155–248.pl_PL
dc.referencesNelsen R.B. (2006), An Introduction to Copulas, Second Edition, Springer‑Verlag New York.pl_PL
dc.referencesParzen E., Mukhopadhyay S. (2012), Modeling, dependence, classification, united statistical science, many cultures, https://arxiv.org/abs/1204.4699 [accessed: 20.01.2018].pl_PL
dc.referencesPearson K. (1895), Notes on regression and inheritance in the case of two parents, “Proceedings of the Royal Society of London”, vol. 58, pp. 240–242.pl_PL
dc.referencesSerrà J., Arcos J.L. (2014), An Empirical Evaluation of Similarity Measures for Time Series Clas­sification, Knowledge‑Based Systems, vol. 67, pp. 305–314.pl_PL
dc.referencesSoper H.E., Young A.W., Cave B.M., Lee A., Pearson K. (1917), On the distribution of the correlation coefficient in small samples. Appendix II to the papers of “Student” and R.A. Fisher. A co‑operative study, “Biometrika”, vol. 11, pp. 328–413.pl_PL
dc.referencesSzékely G.J., Rizzo M.L., Bakirov N.K. (2007), Measuring and testing dependence by correlation of distances, “The Annals of Statistics”, vol. 35, no. 6, pp. 2769–2794.pl_PL
dc.referencesTjostheim D., Hufthammer K.O. (2013), Local Gaussian correlation: A new measure of dependence, “Journal of Econometrics”, vol. 172, issue 1, pp. 33–48.pl_PL
dc.referencesViterbi A. (1967), Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm, “IEEE Transactions on Information Theory”, vol. 13, pp. 260–269.pl_PL
dc.referencesWalesiak M. (2016), The choice of groups of variable normalization methods in multidimensional scaling, “Przegląd Statystyczny”, R. LXIII, no. 1, pp. 7–18.pl_PL
dc.referencesWu Y., Agrawal D., Abbadi A.E. (2000), A comparison of DFT and DWT based similarity search in time‑series databases, Proceedings of the 9th International Conference on Information and Knowledge Management, McLean.pl_PL
dc.contributor.authorEmailmbernard@sgh.waw.pl
dc.identifier.doi10.18778/0208-6018.338.01
dc.relation.volume5en_GB
dc.subject.jelC63
dc.subject.jelE24
dc.subject.jelC18


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record