Pokaż uproszczony rekord

dc.contributor.authorLütkepohl, Helmut
dc.contributor.authorStaszewska-Bystrova, Anna
dc.contributor.authorWinker, Peter
dc.date.accessioned2018-10-05T07:34:36Z
dc.date.available2018-10-05T07:34:36Z
dc.date.issued2018-09-30
dc.identifier.urihttp://hdl.handle.net/11089/25920
dc.description.abstractMethods for constructing joint confidence bands for impulse response functions which are commonly used in vector autoregressive analysis are reviewed. While considering separate intervals for each horizon individually still seems to be the most common approach, a substantial number of methods have been proposed for making joint inferences about the complete impulse response paths up to a given horizon. A structured presentation of these methods is provided. Furthermore, existing evidence on the small-sample performance of the methods is gathered. The collected information can help practitioners to decide on a suitable confidence band for a structural VAR analysis.pl_PL
dc.description.sponsorshipPart of the work on this paper was conducted while the first author was a Fernand Braudel Fellow at the European University Institute in Florence. Financial support from the National Science Center (NCN) through MAESTRO 4: DEC-2013/08/A/HS4/00612 is gratefully acknowledged.pl_PL
dc.language.isoenpl_PL
dc.relation.ispartofseriesLodz Economics Working Papers;4
dc.subjectImpulse responsespl_PL
dc.subjectvector autoregressive modelpl_PL
dc.subjectjoint confidence bandspl_PL
dc.titleConstructing Joint Confidence Bands for Impulse Response Functions of VAR Models - A Reviewpl_PL
dc.typeWorking Paperpl_PL
dc.contributor.authorAffiliationDIW Berlin and Freie Universität Berlinpl_PL
dc.contributor.authorAffiliationUniversity of Lodzpl_PL
dc.contributor.authorAffiliationUniversity of Giessenpl_PL
dc.referencesAlt, F. & Spruill, C. (1977). A comparison of confidence intervals generated by the Scheffe and Bonferroni methods, Communications in Statistics - Theory and Methods A6(15): 1503–1510.pl_PL
dc.referencesAndrews, D. W. K. (1987). Asymptotic results for generalized Wald tests, Econometric Theory 3: 348–358.pl_PL
dc.referencesBagliano, F. C. & Favero, C. A. (1998). Measuring monetary policy with VAR models: An evaluation, European Economic Review 42(6): 1069–1112.pl_PL
dc.referencesBenkwitz, A., Lütkepohl, L. & Neumann, M. (2000). Problems related to bootstrapping impulse responses of autoregressive processes, Econometric Reviews 19: 69–103.pl_PL
dc.referencesBruder, S. (2014). Comparing several methods to compute joint prediction regions for path forecasts generated by vector autoregressions, ECON - Working Papers 181, University of Zurich, Department of Economics. Revised 2015.pl_PL
dc.referencesBruder, S. & Wolf, M. (2018). Balanced bootstrap joint confidence bands for structural impulse response functions, Journal of Time Series Analysis (forthcoming).pl_PL
dc.referencesBrüggemann, R., Jentsch, C. & Trenkler, C. (2016). Inference in VARs with conditional volatility of unknown form, Journal of Econometrics 191: 69–85.pl_PL
dc.referencesDeutsche Bundesbank (2005). Finanzmarktstabilitätsbericht 2005, Deutsche Bundesbank, Frankfurt a.M.pl_PL
dc.referencesFisher, L. A. & Huh, H.-S. (2016). Monetary policy and exchange rates: Further evidence using a new method for implementing sign restrictions, Journal of Macroeconomics 49: 177–191.pl_PL
dc.referencesGertler, M. & Karadi, P. (2015). Monetary policy surprises, credit costs, and economic activity, American Economic Journal: Macroeconomics 7(1): 44–76.pl_PL
dc.referencesGrabowski, D., Staszewska-Bystrova, A. & Winker, P. (2017). Generating prediction bands for path forecasts from SETAR models, Studies in Nonlinear Dynamics & Econometrics 21(5).pl_PL
dc.referencesHamilton, J. D. (2009). Causes and consequences of the oil shock of 2007-08, Brookings Papers on Economic Activity 40: 215–283.pl_PL
dc.referencesHyndman, R. (1995). Highest-density forecast regions for nonlinear and nonnormal time series models, Journal of Forecasting 14(5): 431–441.pl_PL
dc.referencesHyndman, R. (1996). Computing and graphing highest density regions, The American Statistician 50(2): 120–126.pl_PL
dc.referencesInoue, A. & Kilian, L. (2013). Inference on impulse response functions in structural VAR models, Journal of Econometrics 177: 1–13.pl_PL
dc.referencesInoue, A. & Kilian, L. (2016). Joint confidence sets for structural impulse responses, Journal of Econometrics 192(2): 421–432.pl_PL
dc.referencesJorda, O. (2009). Simultaneous confidence regions for impulse responses, The Review of Economics and Statistics 91(3): 629–647.pl_PL
dc.referencesJorda, O. & Marcellino, M. (2010). Path forecast evaluation, Journal of Applied Econometrics 25: 635–662.pl_PL
dc.referencesKapetanios, G., Price, S. & Young, G. (2018). A UK financial conditions index using targeted data reduction: Forecasting and structural identification, Econometrics and Statistics (forthcoming).pl_PL
dc.referencesKilian, L. (1998a). Accounting for lag order uncertainty in autoregressions: The endogenous lag order bootstrap algorithm, Journal of Time Series Analysis 19: 531–548.pl_PL
dc.referencesKilian, L. (1998b). Small-sample confidence intervals for impulse response functions, Review of Economics and Statistics 80: 218–230.pl_PL
dc.referencesKilian, L. (1999). Finite-sample properties of percentile and percentile-t bootstrap confidence intervals for impulse responses, Review of Economics and Statistics 81: 652–660.pl_PL
dc.referencesKilian, L. (2009). Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market, American Economic Review 99(3): 1053–1069.pl_PL
dc.referencesKilian, L. (2013). Structural vector autoregressions, in N. Hashimzade & M. Thornton (eds), Handbook of Research Methods and Applications on Empirical Macroeconomics, Edward Elger, Cheltenham, UK, pp. 515– 554.pl_PL
dc.referencesKilian, L. & Lütkepohl, H. (2017). Structural Vector Autoregressive Analysis, Cambridge University Press, Cambridge.pl_PL
dc.referencesKilian, L. & Murphy, D. P. (2012). Why agnostic sign restrictions are not enough: Understanding the dynamics of oil market VAR models, Journal of the European Economic Association 10(5): 1166–1188.pl_PL
dc.referencesKolsrud, D. (2007). Time-simultaneous prediction band for a time series, Journal of Forecasting 26(3): 171–188.pl_PL
dc.referencesKolsrud, D. (2015). A time-simultaneous prediction box for a multivariate time series, Journal of Forecasting 34(8): 675–693.pl_PL
dc.referencesLütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis, Springer-Verlag, Berlin.pl_PL
dc.referencesLütkepohl, H., Staszewska-Bystrova, A. & Winker, P. (2015a). Comparison of methods for constructing joint confidence bands for impulse response functions, International Journal for Forecasting 31: 782–798.pl_PL
dc.referencesLütkepohl, H., Staszewska-Bystrova, A. & Winker, P. (2015b). Confidence bands for impulse responses: Bonferroni versus Wald, Oxford Bulletin of Economics and Statistics 77: 800–821.pl_PL
dc.referencesLütkepohl, H., Staszewska-Bystrova, A. & Winker, P. (2017). Calculating joint confidence bands for impulse response functions using highest density regions, Empirical Economics (forthcoming).pl_PL
dc.referencesMontiel Olea, J. & Plagborg-Møller, M. (2017). Simultaneous confidence bands: Theoretical comparisons and recommendations for practice, Unpublished manuscript, Harvard University.pl_PL
dc.referencesMontiel Olea, J. & Plagborg-Møller, M. (2018). Simultaneous confidence bands: Theorym implementation, and an application to svars, Journal of Applied Econometrics (forthcoming).pl_PL
dc.referencesNicholls, D. F. & Pope, A. L. (1988). Bias in estimation of multivariate autoregression, Australian Journal of Statistics 30A: 296–309.pl_PL
dc.referencesPope, A. L. (1990). Biases for estimators in multivariate non-Gaussian autoregressions, Journal of Time Series Analysis 11: 249–258.pl_PL
dc.referencesRomano, J. P. &Wolf, M. (2010). Balanced control of generalized error rates, Annals of Statistics 38: 598–633.pl_PL
dc.referencesRoyen, T. (2014). A simple proof of the Gaussian correlation conjecture extended to some multivariate Gamma distributions, Far East Journal of Theoretical Statistics 48: 139–145.pl_PL
dc.referencesScheffe, H. (1953). A method for judging all contrasts in the analysis of variance, Biometrika 49: 87–104.pl_PL
dc.referencesSchüssler, R. & Trede, M. (2016). Constructing minimum-width confidence bands, Economics Letters 145: 182–185.pl_PL
dc.referencesSims, C. A. (1980). Macroeconomics and reality, Econometrica 48: 1–48.pl_PL
dc.referencesSims, C. A. & Zha, T. (1999). Error bands for impulse responses, Econometrica 67(5): 1113–1155.pl_PL
dc.referencesStaszewska, A. (2007). Representing uncertainty about impulse response paths: The use of heuristic optimization methods, Computational Statistics & Data Analysis 52: 121–132.pl_PL
dc.referencesStaszewska-Bystrova, A. (2011). Bootstrap prediction bands for forecast paths from vector autoregressive models, Journal of Forecasting 30: 721– 735.pl_PL
dc.referencesStaszewska-Bystrova, A. (2013). Modified Scheffe’s prediction bands, Journal of Economics and Statistics 233(5-6): 680–690.pl_PL
dc.referencesStaszewska-Bystrova, A. & Winker, P. (2013). Constructing narrowest pathwise bootstrap prediction bands using threshold accepting, International Journal of Forecasting 29: 221–233.pl_PL
dc.referencesStaszewska-Bystrova, A. & Winker, P. (2014). Measuring forecats uncertainty of corporate bond spreads by Bonferroni-type prediction bands, Central European Journal of Economic Modeling and Econometrics 6(2): 89–104.pl_PL
dc.referencesStock, J. & Watson, M. (2005). Understanding changes in international business cycle dynamics, Journal of the European Economic Association 3(5): 968–1006.pl_PL
dc.referencesSidak, Z. (1967). Rectangular confidence regions for the means of multivariate normal distributions, Journal of the American Statistical Association 62: 626–633.pl_PL
dc.referencesWolf, M. & Wunderli, D. (2015). Bootstrap joint prediction regions, Journal of Time Series Analysis 36(3): 352–376.pl_PL
dc.contributor.authorEmailhluetkepohl@diw.depl_PL
dc.contributor.authorEmailanna.bystrova@uni.lodz.plpl_PL
dc.contributor.authorEmailPeter.Winker@wirtschaft.uni-giessen.depl_PL


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord