
L odz

E conomics

W orking

P apers

CONSTRUCTING  JOINT CONFIDENCE 

BANDS FOR IMPULSE RESPONSE 

FUNCTIONS OF VAR MODELS 

– A REVIEW

4/2018

Helmut Lütkepohl

Anna Staszewska-Bystrova 

Peter Winker



Constructing Joint Confidence Bands for

Impulse Response Functions of VAR Models

– A Review

Helmut Lütkepohl
DIW Berlin and Freie Universität Berlin

Mohrenstr. 58
10177 Berlin, Germany

email: hluetkepohl@diw.de

Anna Staszewska-Bystrova
University of Lodz
Rewolucji 1905r. 41
90-214 Lodz, Poland

email: anna.bystrova@uni.lodz.pl

Peter Winker
University of Giessen

Licher Str. 64
35394 Giessen, Germany

email: Peter.Winker@wirtschaft.uni-giessen.de

September 27, 2018

Abstract
Methods for constructing joint confidence bands for impulse response func-
tions which are commonly used in vector autoregressive analysis are reviewed.
While considering separate intervals for each horizon individually still seems
to be the most common approach, a substantial number of methods have been
proposed for making joint inferences about the complete impulse response
paths up to a given horizon. A structured presentation of these methods is
provided. Furthermore, existing evidence on the small-sample performance
of the methods is gathered. The collected information can help practitioners
to decide on a suitable confidence band for a structural VAR analysis.
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1 Introduction

Since the seminal paper by Sims (1980), vector autoregressive (VAR) models
became a standard work horse in applied economic analysis. Fields of ap-
plications include, e.g., transmission of monetary policy shocks (Bagliano &
Favero, 1998), international business cycle linkages (Stock & Watson, 2005)
or real effects of oil price shocks (Hamilton, 2009; Kilian, 2009).

In such applications the interest is in the dynamic reaction of variables
to specific shocks hitting the system. Impulse responses are one of the most
commonly applied tools for describing these dynamic reactions in structural
vector autoregressive analysis (for some recent applications and reviews see,
e.g., Kilian & Murphy (2012), Kilian (2013), Gertler & Karadi (2015), Fisher
& Huh (2016), Kilian & Lütkepohl (2017), and Kapetanios, Price & Young
(2018)). A typical set of results consists of a number of estimated response
paths of endogenous variables to selected structural shocks. Usually, a stan-
dard graph presenting these outcomes, still offered, e.g., by a number of com-
puter packages, includes the estimated response function constructed over the
propagation periods h = 0, . . . , H and a collection of H + 1 individual con-
fidence intervals. Each of these intervals could be used for making marginal
inferences concerning the response of a particular variable to a specific shock
for a given horizon h.

However, in the graphical output of impulse response analysis the lower
and upper end points of the individual confidence intervals are typically con-
nected providing the impression of a joint band for the complete estimated
response function up to horizon H. This graphical representation suggests,
as discussed in a number of papers lately, that the impulse response func-
tions are interpreted as a whole. If the focus of the analysis is on the whole
path, appropriate bands are required which correspond to this interpreta-
tion. What is more, sometimes the interest might lie in discussing the shape
of several impulse response functions jointly. In such cases, the uncertainty
associated with the estimates should be assessed using joint confidence bands.

The aim of this paper is to review the methods proposed in the literature
for constructing such joint bands. We focus on frequentist approaches which
include asymptotic and bootstrap methods. Bayesian procedures which could
be alternatively used include the methods of Sims & Zha (1999), Inoue &
Kilian (2013) and Montiel Olea & Plagborg-Møller (2018) and are not covered
by this review.

Related to the problem of computing confidence bands for impulse re-
sponses is the issue of constructing prediction bands for path forecasts, i.e.,
forecasts calculated for a number of consecutive periods, from VARs. Meth-
ods of calculating such prediction bands were being developed in the liter-
ature in parallel to procedures for obtaining confidence bands for impulse
responses. Although a detailed presentation of these methods is beyond the
scope of the present paper, we provide some comments on the approaches
used in forecasting in the concluding section of the article.

Impulse response analysis and path forecasting are also relevant for anal-
yses based on non-linear models and some of the methods considered here
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might also be applied in a non-linear setting, e.g., the method proposed by
Wolf & Wunderli (2015). Since the number of contributions concerning con-
struction of confidence or prediction bands for such models is very limited,
we do not include these methods in this review (see, however, Grabowski,
Staszewska-Bystrova &Winker (2017) who discuss bootstrap prediction bands
for SETAR models).

In the following Section 2, we introduce the notation used for VAR mod-
els, the resulting impulse response functions and the corresponding confi-
dence intervals and bands. Section 2 also describes the classification applied
to the methods used for constructing joint bands, which will be presented
in Sections 3 and 4. Some existing Monte Carlo based evidence on the per-
formance of several methods is summarized in Section 5, while Section 6
provides concluding remarks.

2 Impulse response functions and confidence

bands

2.1 Structural vector autoregressive analysis

The presentation of the methods will be based on a standard reduced-form
VAR(p) model with p lags, although some of the methods have a broader
scope of application. Let yt = (y1t, . . . , yKt)

′ denote the vector of endogenous
variables of dimension K at time t. Then, the VAR model is given by

yt = ν +

p∑
i=1

Aiyt−i + ut, (2.1)

where the Ai, i = 1, 2, . . ., are K ×K slope coefficient matrices, ν is a fixed
K × 1 intercept term and ut = (u1t, . . . , uKt)

′ is a zero mean white noise
error process such that ut ∼ (0,Σu). For simplicity we assume that the ut

are independently, identically distributed although some results discussed in
the following hold under more general conditions. The covariance matrix Σu

is assumed to be positive definite. Using the lag operator L defined such that
Lyt = yt−1 and defining A(L) = IK − A1L− · · · − ApL

p, the model can also
be expressed as

A(L)yt = ν + ut. (2.2)

We do not consider additional exogenous regressors. Furthermore, the
processes are assumed to be stable and stationary satisfying

detA(z) = det

(
IK −

p∑
i=1

Aiz
i

)
̸= 0 for z ∈ C, |z| ≤ 1. (2.3)

Consequently, the roots are bounded away from the unit circle, and the
process can be expressed in its moving average (MA) representation

yt = A(1)−1ν + A(L)−1ut = µ+
∞∑
h=0

Φhut−h, (2.4)
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where µ = A(1)−1ν, Φ0 = IK and
∑∞

h=0ΦhL
h = A(L)−1. Thus, the MA

coefficient matrices Φh are functions of the Ai parameter matrices.
Structural shocks, εt, are obtained by a linear transformation of the ut,

i.e., εt =B−1ut. A classical choice of B is a lower-triangular matrix obtained
by a Cholesky decomposition of Σu. Many alternative ways to specify and
identify the structural matrix B have been proposed in the literature. In
particular, more general exclusion restrictions on the impact effects or the
long-run effects of the shocks, sign restrictions on the impulse reponses, ex-
ternal instruments or specific features of the distribution of the DGP have
been used to identify the B matrix and hence the structural shocks (for an
extensive review of the related literature see Kilian & Lütkepohl (2017)). In
the following the specific shape of B is not essential. We assume, however,
that it is point-identified and a consistent, asymptotically Gaussian estima-
tor is available. Replacing ut in (2.4) by Bεt provides the responses of the
system to structural shocks as Θh = ΦhB, h = 0, 1, . . .. These functions of
the VAR parameters are the impulse response functions (IRFs) of interest,
which are considered up to a fixed propagation horizon H.

In applications, most of the time, the interest is in a specific IRF, i.e.,
the response of some variable i to the jth shock. We denote this response at
horizon h by θh (= θij,h). In order to ease notation, we will skip the subscript
ij in the following and consider a generic IRF up to a fixed horizon H given
by θ = (θ0, . . . , θH). Then, the goal consists in finding a joint confidence

band, i.e., a hyper-rectangle ×H
h=0 [lh, uh] such that the band contains θ

with a predefined nominal coverage probability of 1 − α, 0 < α < 1. The
constraint of using a hyper-rectangle rather than a more general form, e.g.,
hyper-ellipses, follows from the usual graphical representation of IRFs by
plotting (estimates of) θh against h as shown in Figure 1, which exhibits a
stylized impulse response function with a corresponding confidence band.
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estimated IRF
confidence band

Figure 1: Stylized impulse response function for H = 20 with a confidence
band.
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If a lower-triangular matrix B is used to identify structural shocks, some
impulse response coefficients for h = 0 are zero by construction. Then,
the band is constructed only for h = 1, . . . , H. This applies analogously if
some other parameter of an IRF is constrained to zero. In the following, we
consider IRFs without zero restrictions. If such constraints are imposed the
necessary adjustments to the methods are straightforward.

To enable a meaningful interpretation of IRFs, it appears preferable to
have narrow bands for a given nominal coverage probability. The most com-
monly used measure of band width corresponds closely to the optical per-
ception of figures like Figure 1. It consists in summing up the widths of the
individual intervals at each horizon h for h = 0, . . . , H. Given the equidis-
tance of the horizons, this measure is approximately proportional to the area
between the interpolated upper and lower bounds exhibited in Figure 1. This
might be the reason why, e.g., Bruder & Wolf (2018) use the term ‘volume’

for this measure of band width. By contrast, Bruder (2014) proposed using
the geometric-average widths, which corresponds more closely to the idea of
volume in the (H + 1)-dimensional space, where each IRF is represented by
a point and a band by a hyper-rectangle. Given that this concept of volume
is not common in the literature, we stick to the standard measure of band
width.

Several of the methods presented in the following section allow construct-
ing simultaneous confidence bands for several IRFs at a time with straight-
forward adjustments. Given that the joint consideration of several IRFs is
not very common in empirical applications, we do not comment further on
this possibility.

2.2 Classification of methods for constructing bands

Given a substantial and still growing number of methods proposed for con-
structing joint confidence bands for impulse response functions of VAR mod-
els, the presentation of these methods has to follow some order. We decided
to group the methods in two broad classes.

The first class comprises methods which can be thought of as construct-
ing the joint bands based on some estimate of the variances of the individual
elements of the IRFs using one parameter for scaling. Then, for each horizon
h, the band is given by the estimate θ̂h plus/minus a fixed multiple c of its
estimated standard deviation σ̂h. Given this structure, these methods are
classified as members of a one-parameter family. For these methods, typi-
cally, substantial knowledge is available regarding their asymptotic behavior.
We consider their implementation based both on asymptotic and bootstrap
approaches in Section 3.

The second group of methods comprises all remaining approaches. Some
of these methods impose a specific structure on the bands, others use se-
quential or global optimization algorithms in order to obtain an adequate
finite sample coverage, and also a semi-parametric concept is included in the
survey provided in Section 4.
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3 One-parameter family methods

3.1 Asymptotic methods

3.1.1 Näıve bands

The classical approach to constructing confidence bands for IRFs is based on
standard asymptotic theory for individual estimators θ̂h. Given that these
estimators are non-linear (polynomial) transformations of the estimators of
the VAR coefficient matrices Ai, asymptotic normality of the latter trans-
lates to asymptotic normality of θ̂h. Consequently, the asymptotic variance-
covariance matrix of the estimators θ̂h can be obtained by the Delta-method
(for details and necessary assumptions see, e.g., Kilian & Lütkepohl (2017,
pp. 335ff)). Let σ̂h denote the estimated standard error of θ̂h. Then, an
asymptotic confidence interval for θh at confidence level 1− α has the form

[θ̂h − c1−α/2σ̂h, θ̂h + c1−α/2σ̂h], (3.1)

where c1−α/2 is the quantile of the order 1 − α/2 of the standard normal
distribution.

If the necessary assumptions for asymptotic normality of the parame-
ter estimators are satisfied, this confidence interval will include the actual
impulse response at horizon h, θh, with a probability of 1 − α asymptoti-
cally. However, for practical applications, two caveats are relevant. First,
the asymptotic result does not imply correct coverage for finite (small) sam-
ple sizes. Therefore, we will consider alternative implementations based on
bootstrap estimates in Subsection 3.2. Second, even asymptotically, the cor-
rect coverage at a given horizon h does not imply that the full IRF for
h = 0, . . . , H falls into the hyper-rectangle

×H
h=0[θ̂h − c1−α/2σ̂h, θ̂h + c1−α/2σ̂h] (3.2)

with a probability of 1 − α. In fact, only for very specific settings, e.g., a
perfect correlation of the θ̂h over h, the coverage of these näıve bands will be
close to the nominal level. Even asymptotically, the actual coverage might
be substantially smaller than 1−α, which might not come as a surprise given
that the method considers each horizon separately. In the sequel, we present
some adjustments to the quantile c1−α/2 in order to avoid or at least reduce
this deviance.

3.1.2 Bonferroni bands

Exploiting the correspondence between hypothesis testing and confidence in-
tervals, it appears straightforward to consider the problem of constructing
a joint band for a complete IRF up to horizon H as a multiple testing is-
sue. Assuming the worst case of complete independence between the θ̂h over
h, according to Bonferroni’s principle the quantile c has to be chosen cor-
responding to the level 1 − α/2(H + 1) in order to guarantee a coverage
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probability for the complete IRF of at least 1 − α. Thus, the Bonferroni
band is given by

×H
h=0

[
θ̂h − c1−α/2(H+1)σ̂h, θ̂h + c1−α/2(H+1)σ̂h

]
. (3.3)

Obviously, if all assumptions regarding the asymptotic normality are satis-
fied, this band is conservative in the sense that the actual coverage rate will
be at least 1− α, but tends to be substantially larger in real applications as
the elements of an IRF will typically exhibit some correlation. In Section 4,
adjustments to the Bonferroni bands are suggested which reduce the width
of the band and, consequently, its (over-)coverage.

3.1.3 Šidák bands

Alternatively, joint confidence bands can also be constructed using Šidák’s
principle (Šidák, 1967). Similarly to the Bonferroni approach, these bands
are designed to achieve the nominal coverage probability even if the θ̂h’s are
independent over h. However, in contrast to Bonferroni bands, the Šidák
bands rest on the assumption of a multivariate Gaussian distribution of the
impulse response estimators, which can be justified by asymptotic consider-
ations. In fact, the approach is justified for a larger set of distributions, due
to a result in Royen (2014). However, the underlying probability inequality
is less general than the Bonferroni inequality. While the Bonferroni band is
constructed from intervals with individual coverage of (1 − α/(H + 1)), the
Šidák band is computed using a marginal coverage level of (1 − α)1/(H+1).
Consequently, the relevant factor is obtained as the quantile of the standard
normal distribution of the order

1− 1− (1− α)1/(H+1)

2

and will be denoted as cS. Then, the band is given by

×H
h=0

[
θ̂h − cSσ̂h, θ̂h + cSσ̂h

]
. (3.4)

Since 1 − α/(H + 1) ≈ (1 − α)1/(H+1) for values of H and α as they
are typically used in econometric applications, there is almost no difference
or very little difference between Bonferroni and Šidák bands for practical
purposes, in particular for small α, e.g., 0 < α ≤ 0.1 (see also Montiel Olea
& Plagborg-Møller (2017, Figure 2)).

3.1.4 Wald bands

The methods described so far either assume a very specific and strong de-
pendence between impulse responses (näıve bands) or provide conservative
bands with coverage at least 1− α asymptotically independently of the spe-
cific dependence structure. The Wald bands represent a method which takes
this dependence structure into account explicitly. There exist two versions
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of Wald bands, one based on the joint distribution of the θ̂h and one based
directly on the joint distribution of the parameter estimators of the VAR
model.

We start with the method based on the joint distribution of the θ̂h for
h = 0, . . . , H considered in the context of joint confidence bands by Inoue &
Kilian (2016) and, consequently, labelled as WIK . If the estimator θ̂ of θ is
asymptotically normally distributed, i.e.,

√
T (θ̂ − θ)

d→ N (0,Σθ),

and the asymptotic covariance matrix Σθ of θ̂ is nonsingular, the band is
obtained based on the Wald confidence ellipse

W(1− α) = {θ | W = T (θ̂ − θ)′Σ̂−1
θ (θ̂ − θ) ≤ χ2

H+1,1−α} ,

where Σ̂θ is a consistent estimator of Σθ and χ2
H+1,1−α is the relevant quantile

from a χ2 distribution with H + 1 degrees of freedom. The confidence band
is obtained by the projections of the set W(1− α), i.e.,

WIK(1−α) =×H
h=0 [min{θh | θ ∈ W(1− α)},max{θh | θ ∈ W(1− α)}] .

Figure 2 provides a stylized representation of the different bands described
so far. In particular, it becomes obvious, that exploiting the covariance be-
tween elements by means of the Wald ellipse leads to a smaller confidence
set, while the encompassing rectangle used for the bands turns out to be
even larger than the Bonferroni bands in this case. Lütkepohl, Staszewska-
Bystrova & Winker (2015b) show that this outcome might be rather consid-
ered as a rule than an exception.

Since WIK(1 − α) includes the Wald ellipse, it is conservative, i.e., the
probability of including the actual IRF θ is at least 1− α. Furthermore, as
shown in Montiel Olea & Plagborg-Møller (2018), when Σθ is non singular,
it can be represented as a member of the one parameter family using cIK =√

χ2
H+1,1−α.

It is well-known that the Wald statistic underlying the WIK(1−α) band
in general does not have the assumed asymptotic χ2

H+1 distribution if the co-
variance matrix Σθ is singular (e.g., Andrews (1987)). This situation occurs
in the present context if the number of elements in the IRFs to be estimated
(i.e., H+1 if a single IRF is considered) exceeds the number of slope param-
eters in the estimated VAR model. In that case the asymptotic distribution
of the IRF is degenerate. Inoue & Kilian (2016) resolve the degeneracy of
the asymptotic distribution by transforming the estimator. The correspond-
ing Wald statistic then has a nonstandard asymptotic distribution which can,
however, be approximated by a suitable bootstrap method proposed by Inoue
& Kilian (2016).

An alternative method for constructing Wald confidence bands which
avoids the problem of a degenerate asymptotic distribution of the estimator
underlying the Wald statistic for impulse responses is based directly on the
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Figure 2: Stylized representation of alternative (näıve, Bonferroni and Wald)
confidence sets for a 2-dimensional normal distribution

estimators of the VAR parameters and was considered by Lütkepohl et al.
(2015b). Therefore, we will label this band as WLSW . We assume that all
parameters of the VAR process required for calculating the IRFs of interest
are collected in the M -dimensional vector η such that the IRF, θ = θ(η), is
a differentiable function of η.

Assuming that the estimator η̂ of η has an asymptotic normal distribution
such that

√
T (η̂ − η)

d→ N (0,Ση),

where Ση is nonsingular, the Wald confidence region with asymptotic cover-
age 1− α is defined as

Wη(1− α) = {η | W = T (η̂ − η)′Σ̂−1
η (η̂ − η) ≤ χ2

M,1−α},

where Σ̂η is a consistent estimator of Ση. From this confidence set for η, we
can construct an asymptotic confidence set for θ with a coverage of at least
1− α:

Wθ(1− α) = {θ(η) | η ∈ Wη(1− α)}.

Finally, the confidence band is obtained as for WIK :

WLSW (1−α) =×H
h=0

[
min{θh | θ ∈ Wθ(1− α)},max{θh | θ ∈ Wθ(1− α)}

]
.
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According to Montiel Olea & Plagborg-Møller (2018), this projection can
also be expressed in the form typical for the one-parameter family class of
bands up to terms of order op(T

−1/2).

3.1.5 sup-t bands

Given the shortcomings in guaranteeing the correct coverage asymptotically
of the methods presented so far, Montiel Olea & Plagborg-Møller (2018)
propose a different choice of c. They start with the observation that the
bands from the one-parameter family can also be represented by the set of
all IRFs θ̃ = (θ̃0, . . . , θ̃H) satisfying

max
h=0,...,H

|θ̃h − θ̂h|
σ̂h

≤ c . (3.5)

Consequently, according to their Lemma 1, the asymptotic coverage prob-
ability is given by the cumulative distribution function of the maximum of
the absolute values of H + 1 standard normal variables, which are typically
correlated. Let Q denote this distribution, which has to be approximated
by means of Monte Carlo simulation for a given estimate of the asymptotic
variance-covariance matrix. Then, the obvious choice for c is the 1−α quan-
tile q1−α of Q which provides the sup-t bands:

×H
h=0[θ̂h − q1−ασ̂h, θ̂h + q1−ασ̂h]. (3.6)

The sup-t bands are asymptotically balanced, i.e., the pointwise coverage
probabilities for each horizon h have the same asymptotic limit.

For a given estimate of Σ̂θ the widths of the bands described in this
subsection are proportional to the factor c. Montiel Olea & Plagborg-Møller
(2017) list the following relations:

c(näıve) ≤ c(sup-t) ≤ c(Šidák): This relation always holds but it should
be noted that the näıve band has coverage at most 1−α, but typically
substantially smaller than 1−α and is hence not a serious competitor.
It is listed here for completeness.

c(Šidák) ≤ c(Bonferroni): Formally, the Bonferroni bands are larger than
the Šidák bands. However, the difference is very small for all relevant
significance levels. Also, the Šidák band is based on a normal distribu-
tion assumption for θ̂. This assumption is no problem here since all the
bands are justified with asymptotic arguments only, using the asymp-
totic normal distributions of the estimators. On the other hand, the
actual distribution of the impulse responses are non-Gaussian, which
may make the use of the more generally valid Bonferroni band more
plausible.

c(Bonferroni) ≤ c(WaldIK) ≤ c(WaldLSW ): This relation holds if α <
0.5 and 2 ≤ H + 1 ≤ M , where M is the total number of underlying
VAR parameters including the relevant residual covariance parameters.
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Montiel Olea & Plagborg-Møller (2017) attribute this result to Alt &
Spruill (1977).

It may be worth emphasizing that the confidence intervals and, hence, the
confidence bands rely on nonzero asymptotic variances σ2

h. That condition
is satisfied under common assumptions, even if the asymptotic distribution
of the IRF is degenerate, for example, because the propagation horizon is
chosen larger than the number of VAR slope parameters. However, Benkwitz,
Lütkepohl & Neumann (2000) discuss cases where standard estimators of
impulse responses have higher convergence rates than

√
T such that the term√

T (θ̂h − θh) converges to zero and, hence, has a zero asymptotic variance
even under usual assumptions.

In real applications, when IRFs are considered, their small-sample dis-
tributions are not known. They are not Gaussian in general. Therefore,
the confidence bands as described above are typically based on bootstrap
approximations of the sampling distributions of the quantities of interest as
discussed in more detail in the next subsection.

3.2 Bootstrap methods

Both in the case when small-sample distributions are not known and cannot
be assumed to be Gaussian and when there is not a closed-form solution for
the asymptotic standard error as in the case of the sup-t statistic, bootstrap
methods might be the appropriate approach when dealing with confidence
bands for IRFs. For this reason, most applications are based on bootstrap
methods. These methods proceed by generating samples of estimates of the
quantities of interest, in our case the IRFs. Thus, they are based on a sample
of estimates θ̂b, b = 1, . . . , N . This sample can be used to estimate the stan-
dard deviations σh, h = 0, 1, . . . , H, used to construct the confidence intervals
and bands in the previous subsection. Alternatively, they could be used to
estimate the quantiles of the t ratios underlying some of the intervals or they
can be used to directly estimate the quantiles of the distributions of the es-
timated impulse responses θ̂h. The latter approach is in fact rather common
in the structural VAR literature. We will therefore primarily focus on that
approach in the following. We are presenting the associated confidence bands
under the heading of the one-parameter family because the basic construction
principles are very similar to those presented in the previous subsection.

Bootstrap methods are often applied in the hope to obtain a better small-
sample coverage than with their asymptotic counterparts. We emphasize,
however, that just like asymptotic properties, bootstrap methods in general
only approximate the true finite-sample properties of estimators and test
statistics because they are based on empirical distributions and not on true
distributions. The validity of bootstrap procedures is typically justified by
asymptotic arguments assuming that both the sample size T and the number
of bootstrap replications N go to infinity. In some cases bootstrap approx-
imations of the distributions of certain statistics converge at a faster rate
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than approximations based on conventional asymptotic arguments. This re-
sult has stimulated hopes that the bootstrap can also provide more accurate
confidence intervals and bands. However, better theoretical convergence rates
have not been obtained for the bootstrap confidence bands discussed in the
following. Thus, their accuracy in small samples may not be better than
that obtained for asymptotic theory based confidence bands. In practice, the
relative accuracy of asymptotic and bootstrap based confidence intervals and
bands for IRFs is typically investigated by Monte Carlo simulation techniques
and may depend on the specific data generation processes (DGPs) used in
such simulations. We will review some small-sample evidence in Section 5.

Despite the similarity of the ideas underlying the asymptotic and boot-
strap confidence bands, the actual appearance of the two types of bands can
differ substantially in small samples. For example, it is obvious that the
impulse response estimate θ̂h always lies in the center of a corresponding
interval such as (3.1). Similarly, the estimated IRF lies in the center of the
band (3.2). In contrast, the point estimate of the IRF may be at the edge or
even outside a bootstrap confidence band.

There exists a plethora of different bootstrap implementations, which
differ in their suitability for different settings (see, e.g., Kilian & Lütkepohl
(2017, pp. 340ff)). Therefore, we restrain ourselves from providing an overview
and present one standard implementation, i.e., the residual-based bootstrap
as suggested by Kilian (1998b, 1999), which is used for generating boot-
strapped IRFs. In the following subsections, we describe how these boot-
strapped IRFs are used in the bootstrap versions of the methods introduced
above in order to obtain joint confidence bands.

Assuming that a sample y1, . . . , yT and presample values y−p+1, . . . , y0 are
available, the steps of the bootstrap algorithm are as follows:

1. The parameters of (2.1) are estimated, resulting in ν̂, Â1, . . . , Âp, Σ̂u

and the corresponding residuals are computed as

ût = yt − ν̂ − Â1yt−1 − · · · − Âpyt−p

for t = 1, . . . , T . Unless the ût have mean zero by construction as in the
case of ordinary least squares estimation, they should be re-centered.

2. The bootstrap DGP is defined by

y∗t = ν̂ +

p∑
i=1

Âiy
∗
t−i + u∗

t ,

where u∗
t follows the empirical distribution of the (re-centered) ût. This

DGP is used to generate N bootstrap samples y∗t of size T , which are
conditional on the p initial observations y−p+1, . . . , y0 of yt. Realizations
of u∗

t are obtained by random drawing with replacement from {ût}Tt=1.

3. Each of theN samples is used to estimate the parameters of (2.1) by the
same estimation technique as applied in step 1. This leads to obtaining
N different sets of estimates ν̂b, Âb

1, . . . , Â
b
p, Σ̂

b
u for b = 1, . . . , N .
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4. Based on {ν̂b, Âb
1, . . . , Â

b
p, Σ̂

b
u}Nb=1, N bootstrap replicates of impulse

response functions θ̂b0, . . . , θ̂
b
H , b = 1, . . . , N , are computed.

The estimation of the VAR model in step 1 may be performed using
least squares (see, e.g., Lütkepohl (2005)) or some other suitable estimation
method. In practice, bias-corrected least squares is used in many appli-
cations. The bias correction can be based either on the asymptotic mean
bias formula presented by Nicholls & Pope (1988) and Pope (1990) or the,
more generally applicable, bootstrap estimator described by Kilian (1998b).
The second approach is less often included in Monte Carlo comparisons of
methods for constructing confidence bands due to the high computational
complexity related to the implementation of the double bootstrap.

If the bias adjustment changes the dynamic properties of the estimated
system by introducing non-stationarity, it is advisable to apply the station-
arity correction of Kilian (1998b), consisting in down-scaling bias estimates
in such a way that the corrected bias-adjusted values describe a stationary
system.

In step 2, there are also alternative approaches to choose the initial obser-
vations. One may either use the original presample observations y−p+1, . . . , y0
or one may randomly sample p consecutive values from the sample values
y−p+1, . . . , y0, y1, . . . , yT .

Generally, the above algorithm may need some modifications for specific
empirical applications. For example, an adjustment might be required be-
cause the lag order p is rarely known and has to be estimated. The lag order
selection may then be repeated in step 3 giving rise to the endogenous lag
order algorithm of Kilian (1998a). Further changes would be necessary if the
errors ut were not independent but just serially uncorrelated and possibly
conditionally heteroskedastic. In such cases, the residual-based bootstrap
method described above, should be substituted with a suitable wild boot-
strap or block-bootstrap procedure as proposed by Brüggemann, Jentsch &
Trenkler (2016) (for an overview see, e.g., Kilian & Lütkepohl (2017)).

3.2.1 Näıve bands

The construction of näıve bands based onN bootstrap realisations is straight-
forward. For each h = 0, . . . , H the 1−α interval is obtained by determining
the α/2 and the 1− α/2 percentiles of the bootstrapped θ̂bh.

If the bootstrap distribution corresponds well to the finite sample distri-
bution of the impulse responses, at each horizon h, a share of 1−α confidence
intervals will cover the true θh. However, this does not imply that a share of
1−α of the bands covers the true IRF θ = (θ0, . . . , θH)

′. Figure 3 illustrates
the point by showing a random sample from a bivariate normal distribution
and confidence sets corresponding to naive (left) and Bonferroni bands (right)
for α = 0.05. While in the left-hand panel exactly 95% of the observations
are in each of the two intervals extending to infinity in the second dimension
(dotted lines), the joint coverage probability of the intersection amounts to
92.3%, falling short of the nominal level.
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Figure 3: Comparison of näıve (left) and Bonferroni (right) confidence sets
for simulated 2-dimensional IRFs.

3.2.2 Bonferroni bands

The bootstrap based construction of Bonferroni bands follows exactly the
procedure for the näıve bands with the sole difference that for each h =
0, . . . , H the 1−α/(H+1) interval is obtained by determining the α/2(H+1)
and the 1− α/2(H + 1) percentiles of the bootstrapped θ̂bh.

The Bonferroni bands are illustrated in the right panel of Figure 3. A
direct comparison with the näıve bands indicates that the joint coverage in-
creases. Now, the individual coverage of the sample points in each dimension
amounts to 97.5%, while, as might have been expected given the theoretical
properties of Bonferroni bands, the joint coverage exceeds the nominal level
and is equal to 96.15%.

3.2.3 Šidák bands

Šidák bands are quite similar to Bonferroni bands and so is the construction
based on the bootstrapped IRFs by just replacing the bootstrapped quantiles
of orders α/2(H + 1) and 1− α/2(H + 1) by the percentiles

1− (1− α)1/(H+1)

2
and 1− 1− (1− α)1/(H+1)

2
,

respectively. However, given that the construction depends on the joint nor-
mal assumption, these bands cannot be guaranteed to have at least a cov-
erage of 1 − α even if the bootstrap procedure provides the correct finite
sample distribution without approximation error. For most practical pur-
poses, however, the difference between Bonferroni bands and Šidák bands
will be negligible also for their bootstrap based versions.
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3.2.4 Wald bands

The bootstrap approaches for both types of Wald bands differ from the pre-
vious ones as they are based on a confidence ellipse instead of univariate
intervals. They differ insofar as the bootstrapped version of WIK(1 − α) is
based on the θ̂b, whileWLSW is constructed from the bootstrapped parameter
estimates {ν̂b, Âb

1, . . . , Â
b
p, Σ̂

b
u}Nb=1.

For WIK(1− α), in a first step the Wald statistics

W b = T (θ̂b − θ̂)′Σ̂(N)−1
θ (θ̂b − θ̂)

have to be calculated, where Σ̂(N)θ denotes an estimator of the covariance
matrix of the θ̂b. Given that the asymptotic covariance matrix is singular
if more impulse responses are considered than there are VAR parameters,
it is important to use a suitable estimator Σ̂(N)θ as proposed by Inoue &
Kilian (2016) to ensure a valid bootstrap approximation of the potentially
nonstandard asymptotic distribution of the Wald statistic.

Once the W b are obtained, the 1 − α quantile c1−α can be determined.
It is not necessary to determine the corresponding Wald confidence ellipse
as only its projections are required. Let Wboot(1 − α) denote the set of
bootstrapped IRFs corresponding to the (1 − α)N smallest values of W b.
Then, the bootstrapped confidence band is given by

Wboot
IK (1−α) =×H

h=0

[
min{θh | θ ∈ Wboot(1− α)},max{θh | θ ∈ Wboot(1− α)}

]
.

The procedure is illustrated in Figure 4. The left panel shows a random
sample from a bivariate normal distribution and the corresponding Wald
confidence ellipse. The resulting band is provided by the dashed rectangle in
the right panel. The empirical coverage of this band is larger than or equal
to that of the confidence ellipse.
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Figure 4: Comparison of Wald confidence sets for simulated 2-dimensional
standard normal distribution.
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The alternative method for constructing Wald confidence bands proposed
by Lütkepohl et al. (2015b) constructs a Wald confidence set for the estima-
tors of the VAR parameters. This avoids the issues with a potentially (near)
singular covariance matrix. Otherwise, the procedure is quite similar. For
each bootstrapped parameter vector ηb, the Wald statistic is calculated. The
confidence set is given by the (1− α)N smallest values. For the elements in
this set, the corresponding IRFs are calculated, and the resulting set of IRFs
is projected as above, providing Wboot

LSW (1− α).

3.2.5 sup-t bands

Montiel Olea & Plagborg-Møller (2017) propose two bootstrap methods for
generating sup-t bands. The first one is based on the empirical percentiles of
the bootstrapped θ̂bh, while the second one involves estimation of the boot-
strap distribution of the maximum of the absolute values of the standardized
estimates, which requires estimators of the empirical standard deviations.

Starting with the bootstrap realisations θ̂b0, . . . , θ̂
b
H , b = 1, . . . , N , for each

h = 0, . . . , H, the empirical ζ quantile of θ̂bh can be defined and is denoted as

qh,ζ . The goal is to find a value of ζ̂ such that the rectangle

×H
h=0[qh,ζ̂ , qh,1−ζ̂ ] (3.7)

covers at least (1 − α)N of the bootstrap realisations. Montiel Olea &
Plagborg-Møller (2017) propose to solve numerically for ζ̂ on the interval
[α/2(H + 1), α/2], where the lower bound is motivated by the Bonferroni
bounds.

In the second approach, the bootstrap realisations are used in a first
step to obtain estimators of the empirical standard deviation σ̂h of θ̂h, h =
0, . . . , H. Then, for each bootstrap realisation b, the maximum

m̂b = max
h=0,...,H

|θ̂bh − θ̂h|
σ̂h

(3.8)

is calculated. The quantity q̂1−α is obtained as the empirical (1−α) quantile
of m̂1, . . . , m̂N . Finally, the band is given by

×H
h=0[θ̂h − σ̂hq̂1−α, θ̂h + σ̂hq̂1−α] . (3.9)

Montiel Olea & Plagborg-Møller (2018) mention that their implementa-
tion of the bootstrap version of the sup-t bands is closely related to the boot-
strap based adjusted Bonferroni and Wald bands of Lütkepohl, Staszewska-
Bystrova & Winker (2015a, 2015b) which will be described in more detail
in Section 4.3. The latter authors present simulation evidence on the small
sample performance of these methods and find that they can lead to rather
wide confidence bands in practice which led to further research on improving
the methods and motivated some of the proposals presented in the following
section. The small sample properties of the methods will be further discussed
in Section 5.
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4 Other methods

In this section, we review those methods of constructing confidence bands
which do not fall into the category of one-parameter family procedures. The
approaches are quite diverse. We start with presenting the bands proposed by
Bruder & Wolf (2018) in Subsection 4.1, which are constructed using a boot-
strap. Subsection 4.2 presents the method proposed by Jordà (2009), which
is based on asymptotic considerations. The remaining proposals either use or
can be applied using the bootstrap as introduced in Subsection 3.2. Despite
the differences, the last group of methods introduced in Subsection 4.3 shares
the feature that bands are formed as envelopes of selected (1 − α)N boot-
strap IRFs. The methods differ in the way the relevant impulse responses
are chosen.

4.1 Bands of Bruder and Wolf

Bruder & Wolf (2018) propose to construct confidence bands using a method
that was originally developed by Romano & Wolf (2010) to control the joint
size of a sequential testing procedure. The algorithm uses the bootstrap to
approximate the distributions of the terms max

√
T |θ̂h − θh|. In the first

step, bootstrap distributions {
√
T |θ̂bh − θ̂h|}Nb=1 for propagation horizons h ∈

{0, . . . , H} are obtained, which allows to computeH+1 empirical distribution
functions Gh(s) of

√
T |θ̂bh − θ̂h| of the form

Gh(s) =
1

N

N∑
b=1

1

(√
T |θ̂bh − θ̂h| ≤ s

)
, s ∈ R,

where 1(·) denotes an indicator function which is 1 if the condition in the
argument is satisfied and 0 otherwise. The corresponding empirical quantile
functions G−1

h (q) of
√
T |θ̂bh − θ̂h| are given by G−1

h (q) = inf {s | Gh(s) ≥ q}.
Denoting the set of propagation horizons, where

√
T |θ̂bh − θ̂h| have non-

degenerate distributions by S such that S ⊆ {0, . . . , H}, the empirical dis-
tribution functions Dh(s) of maxh∈S Gh(

√
T |θ̂bh − θ̂h|), are defined as

Dh(s) =
1

N

N∑
b=1

1

(
max
h∈S

Gh

(√
T |θ̂bh − θ̂h|

)
≤ s

)
, s ∈ R,

with corresponding empirical quantile functions D−1
h (q) = inf{s | Dh(s) ≥

q}. The bands for the coverage level of 1− α are then computed as:

×H
h=0

[
θ̂h −

1√
T
G−1

h

(
D−1

h (1− α)
)
, θ̂h +

1√
T
G−1

h

(
D−1

h (1− α)
)]

. (4.1)

Bruder & Wolf (2018) show that these bands have asymptotically correct
coverage for points in the parameter space where the usual maximum like-
lihood estimators of the impulse responses have nondegenerate asymptotic
distributions. Moreover, for those points they are asymptotically balanced,
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i.e., the pointwise coverage probabilities for each horizon h have the same
asymptotic limit. Bruder & Wolf (2018) consider bands with this property
because it is rather common for IRFs and is shared, for example, by the
näıve, Bonferroni, Šidák and sup-t bands presented earlier. It is not obvious
by which alternative property it should be replaced in this context. Note,
however, that allowing for unbalanced bands may lead to overall smaller
bands.

4.2 Asymptotic bands of Jordà

Another procedure for constructing bands for structural impulse response
functions was considered by Jordà (2009) who based his approach on Scheffé’s
S-method of simultaneous inference (Scheffé, 1953) and asymptotic normal-
ity of the joint distribution of impulse response estimators. The band is
computed as θ̂0

...

θ̂H

± P


√

χ2
H+1,1−α

H+1
...√

χ2
H+1,1−α

H+1

 (4.2)

where P stands for the Cholesky factor obtained from decomposing an es-
timate of the asymptotic covariance matrix of θ̂ = (θ̂0, . . . , θ̂H)

′ as Σ̂θ/T =
PP ′, and χ2

H+1,1−α represents the 1−α percentile of the χ2 distribution with
H + 1 degrees of freedom.

The formula (4.2) was later modified by Jordà & Marcellino (2010) who
used the bands as prediction bands when forecasting from VARs. Their
version has the form: θ̂0

...

θ̂H

± P


√

χ2
1,1−α

1
...√

χ2
H+1,1−α

H+1

 (4.3)

The methods (4.2) and (4.3) were subsequently criticized by Staszewska-
Bystrova (2013) and Wolf & Wunderli (2015) who pointed out some inconsis-
tencies in deriving these formulae. Staszewska-Bystrova (2013) suggested to
substitute all negative entries of P by their absolute values, which improves
the coverage frequencies of the bands. Wolf & Wunderli (2015) objected,
among other things, to the reasoning behind division with H + 1 in (4.2)
or with h + 1 in (4.3). They also point out some theoretical deficiencies in
the derivation of the bands, which also concern the method of Staszewska-
Bystrova (2013).

4.3 Bands constructed as envelopes of sets of IRFs

The group of methods presented in this subsection is based on selecting,
from N replicates, (1 − α)N sample IRFs with certain properties. These
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sample IRFs are usually generated by bootstrapping, even though some of
the papers used functions obtained from other types of simulations to describe
the procedures. In what follows we focus on bootstrap based applications of
the methods. Once the set N ∗ of (1 − α)N IRFs is defined, the bands are
obtained as:

×H
h=0

[
min
b∈N ∗

(θ̂bh),max
b∈N ∗

(θ̂bh)

]
. (4.4)

Below we review the criteria used by alternative methods in the pre-selection
process in order to obtain the set N ∗.

Staszewska (2007) proposes to obtain confidence regions for vector er-
ror correction (VEC) models by finding the 1 − α proportion of the boot-
strapped impulse responses whose envelope, given by (4.4), provides the nar-
rowest band. Since full enumeration of all possible sets of paths, which
would require to consider

(
N

(1−α)N

)
options, or even some equivalent simpli-

fied enumerations (Staszewska-Bystrova & Winker, 2013), would be too time
consuming for typically used values of N and α, she resorts to optimization
using a genetic algorithm (GA). The minimization procedure is applied after
simplifying the problem by indicating those bootstrapped impulse responses
which, by construction, must be covered by the band. These paths are found
by sorting the bootstrapped values for all horizons and selecting those with
no elements belonging to the αN + 1 largest or smallest values. Schüssler &
Trede (2016) follow a similar approach replacing the optimization heuristic by
an exact mixed-integer optimization algorithm to find minimum-width con-
fidence bands. It involves a branch-and-bound algorithm improved through
the use of cuts and heuristics. Thus, the method becomes feasible with cur-
rent computational resources for problem instances as they are typically used
in macroeconometric applications.

Apart from the methods using global optimization, some other heuristic
approaches were proposed, which can be viewed as sequential optimization
procedures. Staszewska (2007) describes three such algorithms based on
iterative rejection from the initial set of size N of those bootstrapped IRFs
whose removal shrinks the envelope of the paths in each of αN steps. One
of these procedures, labelled as the neighboring path (NP) method, consists
in rejecting those paths which are most distant from the estimated impulse
response function. The distance is either defined as Euclidean distance or
computed using absolute deviations. The band is obtained as the envelope
(see equation (4.4)) of the remaining (1− α)N bootstrap IRFs.

Lütkepohl et al. (2015a, 2015b) suggest to adjust the classical approaches
to forming bands given by bootstrap Bonferroni and Wald methods. The
need for an adjustment arises since both types of bands are conservative and
may be substantially too wide. As explained in Section 3.2.2, Bonferroni
bands tend to have a coverage larger than the nominal confidence level. The
adjusted procedures aim at reducing the coverage level to 1−α. An adjusted
Bonferroni band is obtained by first identifying those bootstrap impulse re-
sponses which are completely covered by the Bonferroni band, then reducing
this set until (1 − α)N paths remain and obtaining the band according to
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equation (4.4). The excessive paths are eliminated one at a time. In each
iteration, an IRF is rejected whose removal reduces the current envelope by
the largest amount.

An adjustedWald band of Lütkepohl et al. (2015b) recognizes thatWboot
LSW (1−

α) may contain more than (1 − α)N bootstrap IRFs. Therefore it re-
moves those bootstrapped IRFs which, after sorting, provide the (1 − α)N ,
(1 − α)N − 1, (1 − α)N − 2, . . . values of the Wald statistic. The process
continues until the removal of the next IRF would violate the constraint that
at least (1 − α)N IRFs have to be covered by the envelope of the retained
bootstrapped impulse responses.

Lütkepohl, Staszewska-Bystrova & Winker (2017) construct confidence
bands by considering a version of the highest density region (HDR) approach
introduced by Hyndman (1995, 1996). The basic HDR method is applied to
a collection of IRFs obtained from N bootstrap replications, by first estimat-
ing their individual densities, second selecting (1 − α)N IRFs with highest
density values and then finding the smallest rectangular box which covers
the chosen replicates (for N ∗ indicating the set of bootstrap drawings corre-
sponding to the (1− α)N largest density values, this box is given by (4.4)).
Density estimates are calculated using a normal kernel estimator. To take
into account different variances of response parameter estimators for alter-
native periods h = 0, . . . , H or even their whole covariance structure, two
additional variants of the procedure are introduced. They consist in com-
puting density estimates for appropriately transformed bootstrap IRFs and
constructing the band on the basis of the original (pre-transformation) values
of the (1 − α)N IRFs with highest densities. The transformations involve
respectively, weighing the bootstrapped values period-wise by the estimated
standard deviations or whitening the bootstrap replicates.

5 Asymptotic and finite sample comparison

Given a substantial number of methods based on asymptotic arguments
which could be used to compute confidence bands, it is useful to summarize
their small-sample properties which might help to select the best method for
a particular application. Some evidence on the small-sample performance
can be gathered from the results of Monte Carlo simulations reported in the
literature. The most important criteria used to assess the bands are their
coverage, width and, in some cases, also their balance. Before we review
some small-sample results for the confidence bands for IRFs it is useful to
compare them on the basis of their asymptotic properties.

If the asymptotic distribution of the impulse responses can be assumed
to be multivariate normal, large sample features of the procedures for con-
structing bands for a single impulse response function from the one-parameter
family are easily compared. Sup-t bands are the most attractive bands, as
only for this method asymptotic coverage is equal to the nominal rate of 1−α.
In addition, these bands are balanced in large samples and they are narrower
than the remaining bands designed for making joint inferences. Bonferroni,
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Šidák and Wald bands are conservative with a large sample coverage of at
least 1 − α and usually exceeding the nominal coverage probability. Al-
though Šidák and Bonferroni bands are usually almost identical, under some
conditions listed in Subsection 3.1.5, Šidák bands are slightly narrower and
hence better than Bonferroni bands, which have in turn smaller width than
the Wald bands. Additionally, Šidák and Bonferroni bands are asymptoti-
cally balanced. As mentioned before, despite being the smallest, the näıve
bands are not a proper tool for building confidence bands as, in general, their
asymptotic coverage is unknown and smaller than 1− α.

In the group of the remaining procedures, the bands of Bruder & Wolf
(2018) and also the regions constructed as envelopes have asymptotically
correct coverage (see, Lütkepohl et al. (2015a, 2017) and Bruder & Wolf
(2018)). Moreover, the former bands are asymptotically balanced. All these
procedures are preferred to the method of Jordà which may not have the
desired coverage even in large samples (see e.g. Staszewska-Bystrova (2013),
Wolf & Wunderli (2015) or Kilian & Lütkepohl (2017)).

For smaller sample sizes, as argued earlier, it may be beneficial to substi-
tute the asymptotic methods with their bootstrap counterparts or alterna-
tives. For this reason, most of the simulation evidence on the performance
of the procedures for constructing bands involves the bootstrapped versions.
While the small-sample properties have been studied for a variety of data gen-
erating processes (DGPs), a common DGP, originally considered by Kilian
(1998b) in the context of investigating the properties of confidence intervals
for impulse responses, has the form of a bivariate VAR(1):

yt =

[
φ 0
0.5 0.5

]
yt−1 + ut, ut ∼ iid N

(
0,

[
1 0.3
0.3 1

])
. (5.1)

This DGP allows to study the behaviour of alternative procedures for con-
structing bands in different scenarios, e.g., for stationary processes (for |φ| <
1), stationary persistent processes (e.g., for |φ| = 0.95) and unit root, coin-
tegrated processes (assuming φ = 1). Other settings concern the length of
the propagation horizon H, the sample size T and the nominal coverage rate
1− α.

Using this DGP with φ ∈ {−0.95,−0.9,−0.5, 0, 0.5, 0.9, 0.95, 1}, Lütkepohl
et al. (2015a) compare the features of the bootstrapped näıve, Bonferroni,
adjusted Bonferroni and NP methods with the properties of the Jordà (2009)
procedure, for 1− α = 0.9. Using H ∈ {10, 20} and T ∈ {50, 100, 200}, it is
shown that the näıve bands and the bands described by Jordà (2009) may
undercover considerably in small samples and are inferior to the competing
methods. The Bonferroni band is, as expected, conservative as it often leads
to estimated coverage rates higher than the nominal value. At the same
time, it is competitive with the best methods given by the adjusted Bon-
ferroni followed by the NP procedure. The latter two exhibit the smallest
deviations from the nominal coverage level and are attractive in terms of
their moderate width. These conclusions are confirmed by results obtained
for a different DGP in the form of a three-dimensional VAR(3) with param-
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eter values based on estimation results using the crude oil market dataset of
Kilian (2009), H ∈ {18, 36} and T ∈ {100, 200, 400}.

Lütkepohl et al. (2015b) also report simulation results based on the DGP
(5.1) with the same parameter choices as in Lütkepohl et al. (2015a). These
results show that Wboot

LSW bands typically have larger coverage and width than
the bootstrapped Bonferroni bands for small and large sample sizes. Thus,
they are considerably conservative. It is also concluded that the adjusted
Wald bands have very similar features to the adjusted Bonferroni bands,
i.e., their actual coverage approximates the nominal value reasonably well
and they are much more narrow than the unadjusted Bonferroni and Wald
regions. The adjusted methods might be preferred, unless the sample size
is very small, the propagation horizon H is large or the data are generated
by a process with a unit root, as these circumstances may lead to their un-
dercoverage. In these cases, conservative methods, especially the Bonferroni
procedure, might be a safer choice.

Bruder & Wolf (2018) perform simulations to compare the small-sample
performance of their balanced bands to selected competing approaches. One
of the DGPs follows (5.1) with φ ∈ {−0.95,−0.9,−0.5, 0, 0.5, 0.9, 0.95}, H ∈
{10, 20} and T ∈ {100, 400}, while the remaining experiments use a trivariate
VAR(4) process. It is found that the coverage bias of the balanced bands is
similar to that of the adjusted Wald bands for the smaller DGPs and that
the former bands have advantages for the larger DGP. Both approaches, as
well as the bootstrapped Bonferroni method, may however exhibit coverage
distortions if the sample size is very small. In such cases, Wboot

LSW bands could
be used. Bruder & Wolf (2018) examine also the empirical balance of their
bands and find that it may be quite distorted in small samples.

DGP (5.1) is also used by Lütkepohl et al. (2017) who investigate the
small-sample properties of alternative variants of HDR bands. An additional
DGP is based on a corporate bond spreads model with six variables and
four lags suggested by Deutsche Bundesbank (2005) and used for forecasting
by Staszewska-Bystrova & Winker (2014). Lütkepohl et al. (2017) find that
one variant of the HDR bands outperforms the Wboot

LSW procedure in terms
of smaller width and more accurate coverage, as long as the sample size is
not very small. The bands are also competitive with bootstrap Bonferroni
bands, especially for the larger DGP and for some scenarios involving large
propagation horizons.

Montiel Olea & Plagborg-Møller (2017) present some small-sample simu-
lation results for DGP (5.1) with φ ∈ {0, 0.5, 0.9, 1} which indicate that their
bootstrap implementation of sup-t bands may have lower coverage than the
nominal level for persistent processes, similar to what was found by Lütkepohl
et al. (2015a, 2015b) for other methods. The bands are much more narrow
than the conservative Bonferroni, Šidák and Wald regions. At the same
time, it is shown that, in practice, Bonferroni and Šidák bands have almost
identical width and coverage.

Some additional Monte Carlo evidence, using different DGPs than (5.1),
is presented by Inoue & Kilian (2016) who study the features of bootstrapped
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WIK(1 − α) sets considered for a number of impulse responses jointly. It is
shown that these confidence sets maintain the nominal coverage rates to a
satisfactory degree, even for highly persistent processes with large dimen-
sions. They exhibit similar coverage accuracy to bootstrapped WLSW (1−α)
regions, but may perform in a more stable way, i.e., have smaller coverage
errors in some problematic cases. The results also indicate that the boot-
strapped Bonferroni sets may become more conservative than the Wald sets,
if the number of statistics analyzed jointly becomes very large as in the case
where a large number of impulse responses is considered simultaneously for
a substantial propagation horizon.

6 Conclusions

The literature on computing joint confidence bands for impulse response
functions from vector autoregressive models is still growing. The purpose of
this review was to describe and classify frequentist methods which have been
proposed and tested by various authors so far.

We have grouped the procedures by considering differences in the way the
alternative bands are calculated. This led to distinguishing asymptotic and
bootstrapped one-parameter family methods and the remaining approaches.
Another possibility would be to classify the procedures according to their
properties. If, e.g., asymptotic coverage was considered, it would be possible
to distinguish methods with unknown coverage properties (näıve and Jordà’s
bands), exact asymptotic coverage (sup-t, Bruder and Wolf, NP, band ob-
tained through global optimization, HDR, adjusted Bonferroni and adjusted
Wald bands) and excessively large sample coverage (Bonferroni, Šidák and
Wald bands). This could help to select an approach to constructing bands in
empirical work for a given sample size, where for large samples, procedures
with exact coverage would be preferred, while for very small sample sizes, a
conservative method could be chosen. Classifying the procedures according
to their coverage properties would be similar to differentiating the bands with
respect to their width, as regions with larger coverage are usually also wider.

As indicated in the introduction, additional insights into the problem of
constructing confidence regions could be gained by investigating the liter-
ature on building prediction bands for VARs. Such bands are designed to
include future trajectories of predicted variables with a pre-defined proba-
bility of 1 − α and the principles for deriving them are very similar to the
ideas behind constructing confidence bands for IRFs. For this reason, many
approaches to building bands described in this review were also applied to
the problem of forecasting. For example, the method of Jordà (2009) was
later applied by Jordà & Marcellino (2010) to build prediction bands for
VAR models and an improved version of this procedure was presented by
Staszewska-Bystrova (2013). The bootstrap version of a sup-t method was
used by Wolf & Wunderli (2015) in the context of predicting from VARs,
but could be applied to prediction in non-linear models as well. A number of
papers dealt also with the application of global and sequential optimization
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methods to the problem of building prediction bands. Kolsrud (2007, 2015)
proposed procedures labeled as the adjusted interval method, the Cheby-
shev method and the minimal content method to, respectively, univariate
and multivariate time series forecasting. The neighbouring paths method of
Staszewska (2007) was used by Staszewska-Bystrova (2011) to predict from
VARs and the procedure based on a global optimization heuristic was con-
sidered by Staszewska-Bystrova & Winker (2013) who optimized the bands
with the threshold accepting (TA) algorithm.

Directions of future research will be an extension of the available finite
sample evidence based on Monte Carlo simulations. This will allow a bet-
ter choice of the appropriate method for constructing joint confidence bands
based on the properties of the data. Furthermore, the finite sample per-
formance of the methods might benefit from refinements of the bootstrap
procedure including the bias correction. Finally, given the growing interest
in different types of non-linear multivariate time series models, the genera-
tion of joint confidence bands and the properties of methods in finite samples
in such settings are research topics of potential interest.
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