Pokaż uproszczony rekord

dc.contributor.authorPlebaniak, Robert
dc.date.accessioned2018-02-22T12:03:02Z
dc.date.available2018-02-22T12:03:02Z
dc.date.issued2016
dc.identifier.issn1085-3375
dc.identifier.otherID 9784592
dc.identifier.urihttp://hdl.handle.net/11089/24148
dc.description.abstractIn quasi-pseudometric spaces (not necessarily sequentially complete), we continue the research on the quasi-generalized pseudodistances. We introduce the concepts of semiquasiclosed map and contraction of Nadler type with respect to generalized pseudodistances. Next, inspired by Abkar and Gabeleh we proved new best proximity point theorem in a quasi-pseudometric space. A best proximity point theorem furnishes sufficient conditions that ascertain the existence of an optimal solution to the problem of globally minimizing the error inf{g(x, y) : γ ϵ Ͳ(x)}, and hence the existence of a consummate approximate solution to the equation Ͳ(Χ) = х.pl_PL
dc.language.isoenpl_PL
dc.publisherHindawipl_PL
dc.relation.ispartofseriesAbstract and Applied Analysis;2016
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.subjectBest proximitypl_PL
dc.subjectQuasi-pseudometricpl_PL
dc.subjectquasi-generalized pseudodistanepl_PL
dc.subjectJ-complete quasi-pseudometric spacepl_PL
dc.titleBest Proximity Point Theorem in Quasi-Pseudometric Spacespl_PL
dc.typeArticlepl_PL
dc.rights.holderCopyright © 2016 Robert Plebaniakpl_PL
dc.page.number1-8pl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Faculty of Mathematics and Computer Science, Department of Nonlinear Analysispl_PL
dc.identifier.eissn1687-0409
dc.referencesV. Sankar Raj, “A best proximity point theorem for weakly contractive non-self-mappings,” Nonlinear Analysis: Theory, Methods & Applications, vol. 74, no. 14, pp. 4804–4808, 2011.pl_PL
dc.referencesA. Abkar and M. Gabeleh, “Best proximity points for cyclic mappings in ordered metric spaces,” Journal of Optimization Theory and Applications, vol. 150, no. 1, pp. 188–193, 2011.pl_PL
dc.referencesA. Abkar and M. Gabeleh, “The existence of best proximity points for multivalued non-self-mappings,” Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, vol. 107, no. 2, pp. 319–325, 2013.pl_PL
dc.referencesA. Latif and S. A. Al-Mezel, “Fixed point results in quasimetric spaces,” Fixed Point Theory and Applications, vol. 2011, Article ID 178306, 2011.pl_PL
dc.referencesU. Karuppiah and M. Marudai, “Best proximity point results in quasimetric spaces,” International Journal of Mathematical Sciences and Applications, vol. 1, no. 3, pp. 1393–1399, 2011.pl_PL
dc.referencesY. U. Gaba, “New results in the startpoint theory for quasipseudometric spaces,” Journal of Operators, vol. 2014, Article ID 741818, 5 pages, 2014.pl_PL
dc.referencesY. U. Gaba, “Startpoints and (α,γ)-contractions in quasipseudometric spaces,” Journal of Mathematics, vol. 2014, Article ID 709253, 8 pages, 2014.pl_PL
dc.referencesO. O. Otafudu, “A fixed point theorem in non-Archimedean asymmetric normed linear spaces,” Fixed Point Theory, vol. 16, no. 1, pp. 175–184, 2015.pl_PL
dc.referencesJ. C. Kelly, “Bitopological spaces,” Proceedings of the London Mathematical Society, vol. 13, pp. 71–89, 1963.pl_PL
dc.referencesI. L. Reilly, “Quasi-gauge spaces,” Journal of the London Mathematical Society, vol. 6, no. 2, pp. 481–487, 1073.pl_PL
dc.referencesI. L. Reilly, P. V. Subrahmanyam, and M. K. Vamanamurthy, “Cauchy sequences in quasi-pseudo-metric spaces,” Monatshefte fur Mathematik ¨ , vol. 93, no. 2, pp. 127–140, 1982.pl_PL
dc.referencesK. Włodarczyk and R. Plebaniak, “New completeness and periodic points of discontinuous contractions of Banach-type in quasi-gauge spaces without Hausdorff property,” Fixed Point Theory and Applications, vol. 2013, article 289, 2013.pl_PL
dc.referencesK. Włodarczyk and R. Plebaniak, “Asymmetric structures, discontinuous contractions and iterative approximation of fixed and periodic points,” Fixed Point Theory and Applications, vol. 2013, article 128, 2013.pl_PL
dc.referencesR. Plebaniak, “On best proximity points for set-valued contractions of Nadler type with respect to b-generalized pseudodistances in b-metric spaces,” Fixed Point Theory and Applications, vol. 2014, article 39, 13 pages, 2014.pl_PL
dc.contributor.authorEmailrobpleb@math.uni.lodz.plpl_PL
dc.identifier.doi10.1155/2016/9784592


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska