dc.contributor.author | Plebaniak, Robert | |
dc.date.accessioned | 2018-02-22T12:03:02Z | |
dc.date.available | 2018-02-22T12:03:02Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1085-3375 | |
dc.identifier.other | ID 9784592 | |
dc.identifier.uri | http://hdl.handle.net/11089/24148 | |
dc.description.abstract | In quasi-pseudometric spaces (not necessarily sequentially complete), we continue the research on the quasi-generalized pseudodistances. We introduce the concepts of semiquasiclosed map and contraction of Nadler type with respect to generalized pseudodistances. Next, inspired by Abkar and Gabeleh we proved new best proximity point theorem in a quasi-pseudometric space. A best proximity point theorem furnishes sufficient conditions that ascertain the existence of an optimal solution to the problem of globally minimizing the error inf{g(x, y) : γ ϵ Ͳ(x)}, and hence the existence of a consummate approximate solution to the equation Ͳ(Χ) = х. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Hindawi | pl_PL |
dc.relation.ispartofseries | Abstract and Applied Analysis;2016 | |
dc.rights | Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/pl/ | * |
dc.subject | Best proximity | pl_PL |
dc.subject | Quasi-pseudometric | pl_PL |
dc.subject | quasi-generalized pseudodistane | pl_PL |
dc.subject | J-complete quasi-pseudometric space | pl_PL |
dc.title | Best Proximity Point Theorem in Quasi-Pseudometric Spaces | pl_PL |
dc.type | Article | pl_PL |
dc.rights.holder | Copyright © 2016 Robert Plebaniak | pl_PL |
dc.page.number | 1-8 | pl_PL |
dc.contributor.authorAffiliation | University of Łódź, Faculty of Mathematics and Computer Science, Department of Nonlinear Analysis | pl_PL |
dc.identifier.eissn | 1687-0409 | |
dc.references | V. Sankar Raj, “A best proximity point theorem for weakly contractive non-self-mappings,” Nonlinear Analysis: Theory, Methods & Applications, vol. 74, no. 14, pp. 4804–4808, 2011. | pl_PL |
dc.references | A. Abkar and M. Gabeleh, “Best proximity points for cyclic mappings in ordered metric spaces,” Journal of Optimization Theory and Applications, vol. 150, no. 1, pp. 188–193, 2011. | pl_PL |
dc.references | A. Abkar and M. Gabeleh, “The existence of best proximity points for multivalued non-self-mappings,” Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, vol. 107, no. 2, pp. 319–325, 2013. | pl_PL |
dc.references | A. Latif and S. A. Al-Mezel, “Fixed point results in quasimetric spaces,” Fixed Point Theory and Applications, vol. 2011, Article ID 178306, 2011. | pl_PL |
dc.references | U. Karuppiah and M. Marudai, “Best proximity point results in quasimetric spaces,” International Journal of Mathematical Sciences and Applications, vol. 1, no. 3, pp. 1393–1399, 2011. | pl_PL |
dc.references | Y. U. Gaba, “New results in the startpoint theory for quasipseudometric spaces,” Journal of Operators, vol. 2014, Article ID 741818, 5 pages, 2014. | pl_PL |
dc.references | Y. U. Gaba, “Startpoints and (α,γ)-contractions in quasipseudometric spaces,” Journal of Mathematics, vol. 2014, Article ID 709253, 8 pages, 2014. | pl_PL |
dc.references | O. O. Otafudu, “A fixed point theorem in non-Archimedean asymmetric normed linear spaces,” Fixed Point Theory, vol. 16, no. 1, pp. 175–184, 2015. | pl_PL |
dc.references | J. C. Kelly, “Bitopological spaces,” Proceedings of the London Mathematical Society, vol. 13, pp. 71–89, 1963. | pl_PL |
dc.references | I. L. Reilly, “Quasi-gauge spaces,” Journal of the London Mathematical Society, vol. 6, no. 2, pp. 481–487, 1073. | pl_PL |
dc.references | I. L. Reilly, P. V. Subrahmanyam, and M. K. Vamanamurthy, “Cauchy sequences in quasi-pseudo-metric spaces,” Monatshefte fur Mathematik ¨ , vol. 93, no. 2, pp. 127–140, 1982. | pl_PL |
dc.references | K. Włodarczyk and R. Plebaniak, “New completeness and periodic points of discontinuous contractions of Banach-type in quasi-gauge spaces without Hausdorff property,” Fixed Point Theory and Applications, vol. 2013, article 289, 2013. | pl_PL |
dc.references | K. Włodarczyk and R. Plebaniak, “Asymmetric structures, discontinuous contractions and iterative approximation of fixed and periodic points,” Fixed Point Theory and Applications, vol. 2013, article 128, 2013. | pl_PL |
dc.references | R. Plebaniak, “On best proximity points for set-valued contractions of Nadler type with respect to b-generalized pseudodistances in b-metric spaces,” Fixed Point Theory and Applications, vol. 2014, article 39, 13 pages, 2014. | pl_PL |
dc.contributor.authorEmail | robpleb@math.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.1155/2016/9784592 | |