Show simple item record

dc.contributor.authorNowakowski, Przemysław R.
dc.date.accessioned2018-02-22T09:48:02Z
dc.date.available2018-02-22T09:48:02Z
dc.date.issued2017
dc.identifier.issn1689-4286
dc.identifier.urihttp://hdl.handle.net/11089/24144
dc.description.abstractThe body is a highly complex, coordinated system engaged in coping with many environmental problems. It can be considered as some sort of opportunity or obstacle, with which internal processing must deal. Internal processing must take into account the possibilities and limitations of the particular body. In other words, even if the body is not involved in the realization of some cognitive explicit task, it is not a neutral factor of our understanding of why a system solves a task in one way or another. Therefore, when conducting research on embodiment and the body’s cognitive system we should not neglect internal, cognitive processing. I appeal to Goldman’s research on embodied cognition to sketch the broader framework for internal processing in embodied cognition. I believe that even if we don’t accept Goldman’s approach as the viable proposal for embodied cognition in general, it’s a quite natural starting point for our analysis. Goldman (2012; 2014, and with de Vignemont 2009) argue for the essential role of the bodily formats or bodily codes (respectively: B-formats and B-codes) in embodied cognition. B-codes are here described as the processing of regions or sub-regions of the central nervous system. They are primarily employed for body control or monitoring, and reused for cognitive tasks. Beyond doubt, this conception provides an excellent starting point for analyzing the internal (mostly neural) processing in cases of embodied cognition. At the end of this paper, I will argue that the embodiment of cognition needs a conceptual twist. Following Keijzer’s (2015) interest in the evolution of the nervous system, and the minimal forms of cognition, I argue that in investigating embodied cognition, we should investigate the role played by cognitive processing for specific kinds of organisms, meaning organisms with a body of a particular morphology (size, shape, kinds, and distribution of sensors and effectors). Doing that, I refer to some conceptual and empirical considerations. I will also try to show that research on embodied cognition is still not sufficiently anchored in evolutionary and comparative studies on cognition, nor on the nervous system and body morphology. Bigger reliance on these kinds of studies, will make it make possible to gain a deeper understanding of internal processing in embodied cognition.pl_PL
dc.description.sponsorshipPublikacja została sfinansowana ze środków Ministerstwa Nauki i Szkolnictwa Wyższego w ramach programu Narodowego Programu Rozwoju Humanistyki przyznanych na podstawie decyzji 0014/NPRH4/H3b/83/2016 - projekt „Przygotowanie i publikacja dwóch anglojęzycznych numerów monograficznych Internetowego Magazynu Filozoficznego HYBRIS” (3bH 15 0014 83).pl_PL
dc.language.isoenpl_PL
dc.publisherInstytut Filozofii Uniwersytetu Łódzkiego
dc.relation.ispartofseriesInternetowy Magazyn Filozoficzny Hybris;38
dc.subjectembodied cognitionpl_PL
dc.subjectbodily cognitive systempl_PL
dc.subjectinternal and cognitive processingpl_PL
dc.subjectB-codespl_PL
dc.subjectE-codespl_PL
dc.titleEmbodied Cognition: Looking Inwardpl_PL
dc.typeArticlepl_PL
dc.page.number74-97pl_PL
dc.contributor.authorAffiliationInstytut Filozofii i Socjologii Polskiej Akademii Naukpl_PL
dc.referencesAizawa, K. (2015a). Cognition and behavior. Synthese, 1-20. doi:10.1007/s11229-014-0645-5pl_PL
dc.referencesAizawa, K. (2015b). What is this cognition that is supposed to be embodied?. Philosophical Psychology, 28(6), 755-775.pl_PL
dc.referencesAizawa, K. (2014). The enactivist revolution. AVANT. Pismo Awangardy Filozoficzno-Naukowej, (2), 19-42.pl_PL
dc.referencesAllen, M., Friston, K. J. (2016). From cognitivism to autopoiesis: towards a computational framework for the embodied mind. Synthese, 1- 24.pl_PL
dc.referencesAnderson, M. L. (2010). Neural reuse: A fundamental organizational principle of the brain. Behavioral and brain sciences, 33(4), 245- 266.pl_PL
dc.referencesAnderson, M. L. (2007). Massive redeployment, exaptation, and the functional integration of cognitive operations. Synthese, 159(3), 329-345.pl_PL
dc.referencesBolt, T., Nomi, J. S., Yeo, B. T., Uddin, L. Q. (2017). Data-Driven Extraction of a Nested Model of Human Brain Function. Journal of Neuroscience, 37(30), 7263-7277pl_PL
dc.referencesBruineberg, J., Kiverstein, J., & Rietveld, E. (2016). The anticipating brain is not a scientist: The free-energy principle from an ecologicalenactive perspective. Synthese, 1-28. https://doi.org/10.1007/s11229-016-1239-1pl_PL
dc.referencesBuckner, C. (2015). A property cluster theory of cognition. Philosophical Psychology, 28(3), 307-336.pl_PL
dc.referencesBurr, C., Jones, M. (2016). The body as laboratory: Prediction-error minimization, embodiment, and representation. Philosophical Psychology, 29(4), 586-600.pl_PL
dc.referencesCaramazza, A., Anzellotti, S., Strnad, L., Lingnau, A. (2014). Embodied cognition and mirror neurons: a critical assessment. Annu. Rev. Neurosci. 37,1–15.doi:10.1146/annurev-neuro-071013- 013950pl_PL
dc.referencesClark, A. (2015). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University Press.pl_PL
dc.referencesClark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science Behavioral and Brain Sciences, 36(3), 181-204.pl_PL
dc.referencesde Bruin, L., Michael, J. (2017). Prediction error minimization: Implications for embodied cognition and the extended mind hypothesis. Brain and cognition, 112, 58-63.pl_PL
dc.referencesDenève, S., Alemi, A., Bourdoukan, R. (2017). The brain as an efficient and robust adaptive learner. Neuron, 94(5), 969-977.pl_PL
dc.referencesDepraz N. (2005). Radical embodiment, in. H. de Preester, V. Knockaert (ed.), Body image and body schema: interdisciplinary perspectives on the body (173 – 186), Amsterdam, Philadelphia: John Benjamins Publishing Companypl_PL
dc.referencesDurgin, F. H., Klein, B., Spiegel, A., Strawser, C. J., Williams, M. (2012). The social psychology of perception experiments: Hills, backpacks, glucose, and the problem of generalizability. Journal of Experimental Psychology: Human Perception and Performance, 38(6), 1582.pl_PL
dc.referencesFirestone, C. (2016) Embodiment in Perception. in. B. P. McLaughlin and H. Kornblith (eds.) Goldman and His Critics (318-334), John Wiley & Sons, Incpl_PL
dc.referencesFirestone, C., & Scholl, B. J. (2014). “Top-down” effects where none should be found: The El Greco fallacy in perception research. Psychological science, 25(1), 38-46.pl_PL
dc.referencesFuchs, T. (2011). The Brain – A Mediating Organ. Journal of Consciousness Studies, 18(7-8), 196-221.pl_PL
dc.referencesGallagher, S. (2015a). How embodied cognition is being disembodied. The Philosophers' Magazine, (68), 96-102.pl_PL
dc.referencesGallagher, S. (2015b). Reuse and body-formatted representations in simulation theory. Cognitive Systems Research, 34, 35-43.pl_PL
dc.referencesGallagher, S., Hutto, D. D., Slaby, J., Cole, J. (2013). The brain as part of an enactive system. Behavioral and Brain Sciences, 36(4), 421-422.pl_PL
dc.referencesGlenberg, A.M., M.F. Kaschak. (2002). Grounding language in action. Psychonomic Bulletin and Review 9, 558–565.pl_PL
dc.referencesGodfrey-Smith, P. (2002). Environmental complexity, signal detection, and the evolution of cognition, in. M. Bekoff, C. Allen, G.M. Burghardt (eds.) The Cognitive Animal: Empirical and Theoretical Perspectives on Animal Cognition, (135-142) Cambridge: The MIT Press.pl_PL
dc.referencesGodfrey-Smith, P. (1996). Complexity and the Function of Mind in Nature. Cambridge: University Press.pl_PL
dc.referencesGoldinger, S. D., Papesh, M. H., Barnhart, A. S., Hansen, W. A., Hout, M. C. (2016). The poverty of embodied cognition. Psychonomic bulletin & review, 23(4), 959-978.pl_PL
dc.referencesGoldman, A. I. (2016). Response to Firestone. in. B. P. McLaughlin and H. Kornblith (eds.) Goldman and His Critics (335-336), John Wiley & Sons, Incpl_PL
dc.referencesGoldman, A. I. (2014). The bodily formats approach to embodied cognition, in. U. Kriegel (ed.) Current Controversies in Philosophy of Mind, (91-108), Routledge.pl_PL
dc.referencesGoldman, A. I. (2012). A moderate approach to embodied cognitive science. Review of Philosophy and Psychology, 3(1), 71-88.pl_PL
dc.referencesGoldman, A., de Vignemont, F. (2009). Is social cognition embodied?. Trends in cognitive sciences, 13(4), 154-159.pl_PL
dc.referencesHaselager, P., van Dijk, J., & van Rooij, I. (2008). A lazy brain? Embodied embedded cognition and cognitive neuroscience. in. P. Calvo, T. Gomila (eds.) Handbook of cognitive science: An embodied approach, ed. (273-287), Elsevier Science.pl_PL
dc.referencesHooper S.L. (2012). Body size and the neural control of movement, Current Biology, 22(9), R318-R322.pl_PL
dc.referencesJacob, P. (2012). Embodying the mind by extending it. Review of Philosophy and Psychology, 3(1), 33-51pl_PL
dc.referencesJékely, G., Keijzer, F., Godfrey-Smith, P. (2015). An option space for early neural evolution. Phil. Trans. R. Soc. B, 370(1684), 20150181.pl_PL
dc.referencesKeijzer, F. (2015). Moving and sensing without input and output: early nervous systems and the origins of the animal sensorimotor organization. Biology & Philosophy, 30(3), 311-331.pl_PL
dc.referencesKeijzer, F. (2003). Making decisions does not suffice for minimal cognition. Adaptive Behavior, 11(4), 266-269pl_PL
dc.referencesKeijzer, F., Arnellos, A. (2017). The animal sensorimotor organization: a challenge for the environmental complexity thesis. Biology & Philosophy, 1-21. https://doi.org/10.1007/s10539-017-9565-3pl_PL
dc.referencesKubanek, J., Snyder, L.H. (2015). Reward-based decision signals in parietal cortex are partially embodied. J.Neurosci. 35,4869– 4881.doi: 10.1523/JNEUROSCI.4618-14.2015pl_PL
dc.referencesKyselo, M., Di Paolo, E. (2015). Locked-in syndrome: a challenge for embodied cognitive science. Phenomenology and the cognitive sciences, 14(3), 517-542.pl_PL
dc.referencesLaughlin, S. B. (2001). Energy as a constraint on the coding and processing of sensory information. Current opinion in neurobiology, 11(4), 475-480.pl_PL
dc.referencesMacIver, M. A. (2009). Neuroethology: From Morphological Computation to Planning. in. P. Robbins, M. Aydede (ed.) The Cambridge Handbook of Situated Cognition (480-504), Cambridge: Cambridge University Presspl_PL
dc.referencesMeteyard, L., Cuadrado, S.R., Bahrami, B., Vigliocco, G. (2012). Coming of age: are view of embodiment and the neuroscience of semantics. Cortex 48, 788– 804.doi:10.1016/j.cortex.2010.11.002pl_PL
dc.referencesMilner, A. D., Goodale, M. A. (1995). The visual brain in action, Oxford: Oxford University Presspl_PL
dc.referencesMiłkowski, M. (2016). Models of Environment. In Frantz, R., Marsh, L. (eds.) Minds, Models and Milieux (227-238). Palgrave Macmillan UKpl_PL
dc.referencesNiven, J. E. (2016). Neuronal energy consumption: biophysics, efficiency and evolution. Current opinion in neurobiology, 41, 129-135.pl_PL
dc.referencesNowakowski P.R. (2015). Commentary: The Embodied Brain: Towards a Radical Embodied Cognitive Neuroscience. Front. Hum. Neurosci. 9:623. doi: 10.3389/fnhum.2015.00623pl_PL
dc.referencesNowakowski P.R. (2017). Bodily processing: the role of morphological computation, Entropy, 19(7), 295; doi:10.3390/e19070295pl_PL
dc.referencesProffitt, D.R. (2008). An action-specific approach to spatial perception. in. R.L. Katzky, B. MacWhinney, M. Behrmann (eds.) Embodiment, ego-space, and action, (177-200), Psychology Presspl_PL
dc.referencesProffitt, D.R., Linkenauger. S.A. (2012). Perception viewed as a phenotypic expression. in.W. Prinz, M. Beisert, A. Herwig. (eds.) Action Science. Foundations of an Emerging Discipline. (171- 198) Cambridge: MIT presspl_PL
dc.referencesPulvermuller, F. (2005). Brain mechanisms linking language and action. Nature Reviews Neuroscience 6, 576–582.pl_PL
dc.referencesRupert, R. D. (2016). Embodied Functionalism and Inner Complexity: Simon’s Twenty-first Century Mind. In Frantz, R., Marsh, L. (eds.) Minds, Models and Milieux (7-33). Palgrave Macmillan UK.pl_PL
dc.referencesShapiro, L. A. (2014). When is Cognition Embodied, in. Uriah Kriegel (ed.) Current Controversies in Philosophy of Mind (73-90) Routledgepl_PL
dc.referencesShapiro, L. A. (2010). Embodied cognition, Routlegepl_PL
dc.referencesShapiro, L. A. (2004). The mind incarnate. Cambridge: MIT press.pl_PL
dc.referencesShaffer, D. M., McManama, E., Swank, C., Durgin, F. H. (2013). Sugar and space? Not the case: Effects of low blood glucose on slant estimation are mediated by beliefs. I-Perception, 4(3), 147-155.pl_PL
dc.referencesTrestman, M. (2013). The Cambrian explosion and the origins of embodied cognition. Biological Theory, 8(1), 80-92.pl_PL
dc.referencesVan Duijn, M., Keijzer, F., Franken, D. (2006). Principles of minimal cognition: Casting cognition as sensorimotor coordination. Adaptive Behavior, 14(2), 157-170.pl_PL
dc.referencesWang, I. E., Clandinin, T. R. (2016). The influence of wiring economy on nervous system evolution. Current Biology, 26(20), R1101- R1108.pl_PL
dc.referencesWilson, R. A. (2010). Extended vision, in. Gangopadhyay, N., Madary, M., Spicer, F.(ed.) Perception, action and consciousness, (277-290). Oxford, New York: Oxford University Presspl_PL
dc.referencesWilson, R. A. (1994). Wide computationalism. Mind, 103(411), 351-372.pl_PL
dc.referencesWilson, R.A., Foglia, L. (2011/2017). Embodied Cognition, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, URL = <https://plato.stanford.edu/archives/spr2017/entries/embodie d-cognition/>.pl_PL
dc.referencesWilson A.D., Golonka, S. (2013). Embodied cognition is not what you think it is. Front. Psychology 4:58. doi: 10.3389/fpsyg.2013.00058pl_PL


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record