Show simple item record

dc.contributor.authorKończak, Grzegorz
dc.date.accessioned2013-06-04T14:57:32Z
dc.date.available2013-06-04T14:57:32Z
dc.date.issued2012
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/1884
dc.description.abstractThe multiple regression analysis is a statistical tool for the investigation relationships between the dependent and independent variables. There are some procedures for selecting a subset of given predictors. These procedures are widely available in statistical computer packages. The most often used are forward selection, backward selection and stepwise selection. In these procedures testing the significance of parameters is used. If some assumptions such as normality errors are not fulfilled, the results of testing significance of the parameters may not be trustworthy. The main goal of this paper is to present a permutation test for testing the significance of the coefficients in the regression analysis. Permutation tests can be used even if the normality assumption is not fulfilled. The properties of this test were analyzed in the Monte Carlo study.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofseriesActa Universitatis Lodziensis, Folia Oeconomica;269
dc.subjectlinear regression modelpl_PL
dc.subjectpermutation testpl_PL
dc.subjectMonte Carlopl_PL
dc.titleOn Testing the Significance of the Coefficients in the Multiple Regression Analysispl_PL
dc.title.alternativeO testowaniu istotności współczynników w modelu regresji wielorakiejpl_PL
dc.typeArticlepl_PL
dc.page.number63-71
dc.contributor.authorAffiliationUniwersytet Ekonomiczny w Katowicach; Wydział Zarządzania; Katedra Statystyki


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record