Pokaż uproszczony rekord

dc.contributor.authorRudnicki, Konrad
dc.contributor.authorRutkowska, Aleksandra
dc.contributor.authorWieczorek, Marek
dc.date.accessioned2016-06-14T07:12:17Z
dc.date.available2016-06-14T07:12:17Z
dc.date.issued2015
dc.identifier.issn1427-969X
dc.identifier.urihttp://hdl.handle.net/11089/18371
dc.description.abstractBy ustalić przydatność katecholamin w ślinie do badania stresu, pobrano próbki od 30 studentów przed egzaminem oraz w dniu pozbawionym stresorów. Następnie aby zbadać wpływ wysiłku poznawczego na poziomy katecholamin, przebadano 31 ochotników, którzy uczestniczyli w dwóch spotkaniach poświęconych realizacji różnych testów poznawczych. Za pomocą HPLC-ED zmierzono poziomy noradrenaliny, dopaminy i adrenaliny w ślinie. W grupie przed egzaminem zaobserwowano wyłącznie obniżony poziom dopaminy w porównaniu do dnia nieobciążonego stresorami. W drugiej grupie wysiłek poznawczy wywołał podwyższenie poziomów wszystkich trzech katecholamin. Zważywszy na niejednoznaczne wyniki z dotychczasowych badań wydaje się, iż adrenalina i noradrenalina w ślinie mogą być stosowane jako markery aktywności współczulnej w badaniach psychologicznych.pl_PL
dc.description.abstractIn order to determine utility of salivary catecholamines in stress studies, samples were collected from 30 students before an exam and on an ordinary day. Subsequently, to examine the effect of cognitive effort on catecholamines, 31 volunteers, on two days, performed two sets of different cognitive tasks. Noradrenaline, adrenaline and dopamine levels were examined with HPLC-ED. Stressed group shown alleviated levels of dopamine, while levels of other substances remained unchanged. In the second group cognitive effort elicited elevated excretion of all three catecholamines. Given conflicting results from previous literature it appears that salivary adrenaline and noradrenaline might be useful as non-invasive markers of sympathetic activity in psychological research.pl_PL
dc.language.isoplpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Psychologica;19
dc.subjectkatecholaminypl_PL
dc.subjectdopaminapl_PL
dc.subjectnoradrenalinapl_PL
dc.subjectadrenalinapl_PL
dc.subjectbiomarkerypl_PL
dc.subjectcatecholaminespl_PL
dc.subjectexaminational stresspl_PL
dc.subjectcognitive effortpl_PL
dc.subjectsalivary markerspl_PL
dc.titlePoziom katecholamin w ślinie podczas stresu egzaminacyjnego i wysiłku poznawczegopl_PL
dc.title.alternativeSalivary catecholamines in examinational stress and cognitive effortpl_PL
dc.typeArticlepl_PL
dc.rights.holder© Copyright by Konrad Rudnicki, Aleksandra Rutkowska, Marek Wieczorek, Łódź 2015; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2015pl_PL
dc.page.number[89]-107pl_PL
dc.contributor.authorAffiliationUniversity of Antwerp, Faculty of Social Sciences, Department of Communication Science, 2000 Antwerp, Belgium, St-Jacobstraat 2.pl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Nauk o Wychowaniu, Instytut Psychologii, 91-433 Łódź, ul. Smugowa 10/12.pl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Biologii i Ochrony Środowiska, Katedra Neurobiologii, 90-236 Łódź, ul. Pomorska 141/143.pl_PL
dc.identifier.eissn2353-4842
dc.referencesÅkerstedt T., Gillberg M., Hjemdahl P., Sigurdson K., Gustavsson I., Daleskog M., Pollare T. (1983). Comparison of urinary and plasma catecholamine responses to mental stress. Acta Physiologica Scandinavica, 117 (1), 19–26.pl_PL
dc.referencesAmenta F., Ricci A., Tayebati S. K., Zaccheo D. (2001). The peripheral dopaminergic system: morphological analysis, functional and clinical applications. Italian journal of anatomy and embryology – Archivio italiano di anatomia ed embriologia, 107 (3), 145–167.pl_PL
dc.referencesAmin F., Friedhoff A. J. (1997). Plasma HVA as a Tool to Investigate Presynaptic Brain Dopaminergic Activity. [W:] F. Amin, A. J. Friedhoff (red.), Plasma HVA in Schizophrenia (s. 1–15). Washington: American Psychiatric Press.pl_PL
dc.referencesAnno N. (2006). Changes of mental stress reactivity during menstrual cycle. Journal of Kurume Medical Association, 69 (1), 14.pl_PL
dc.referencesAnsari T. L., Derakshan N. (2011). The neural correlates of cognitive effort in anxiety: Effects on processing efficiency. Biological Psychology, 86 (3), 337–348.pl_PL
dc.referencesApfel B. A., Otte C., Inslicht S. S., McCaslin S. E., Henn-Haase C., Metzler T. J., Marmar C. R. (2011). Pretraumatic prolonged elevation of salivary MHPG predicts peritraumatic distress and symptoms of post-traumatic stress disorder. Journal of Psychiatric Research, 45 (6), 735–741.pl_PL
dc.referencesAston-Jones G., Cohen J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Reviews Neuroscience, 28, 403–450.pl_PL
dc.referencesBamberger C. M., Schulte H. M., Chrousos G. P. (1996). Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocrine Reviews, 17 (3), 245–261.pl_PL
dc.referencesBassett J. R., Marshall P. M., Spillane R. (1987). The physiological measurement of acute stress (public speaking) in bank employees. International Journal of Psychophysiology, 5 (4), 265–273.pl_PL
dc.referencesBerridge C. W. (2008). Noradrenergic modulation of arousal. Brain Research Reviews, 58 (1), 1–17.pl_PL
dc.referencesBerridge C. W., Foote S. L. (1991). Effects of locus coeruleus activation on electroencephalographic activity in neocortex and hippocampus. The Journal of Neuroscience, 11 (10), 3135–3145.pl_PL
dc.referencesBerridge C. W., Waterhouse B. D. (2003). The locus coeruleus – noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Research Reviews, 42 (1), 33–84.pl_PL
dc.referencesBerthoud H. R., Neuhuber W. L. (2000). Functional and chemical anatomy of the afferent vagal system. Autonomic Neuroscience, 85 (1), 1–17.pl_PL
dc.referencesBezdjian S., Baker L. A., Lozano D. I., Raine A. (2009). Assessing inattention and impulsivity in children during the Go/NoGo task. The British Journal of Developmental Psychology, 27 (2), 365–83.pl_PL
dc.referencesBlennow K., Wallin A., Gottfries C. G., Karlsson I., Månsson J. E., Skoog I., Svennerholm L. (1993). Cerebrospinal fluid monoamine metabolites in 114 healthy individuals 18–88 years of age. European Neuropsychopharmacology, 3 (1), 55–61.pl_PL
dc.referencesBoyle S. H., Matson W. R., Velazquez E. J., Samad Z., Williams Jr R. B., Sharma S., Jiang W. (2014). Metabolomics analysis reveals insights into biochemical mechanisms of mental stress-induced left ventricular dysfunction. Metabolomics, 1–12.pl_PL
dc.referencesCahill L., McGaugh J. L. (1998). Mechanisms of emotional arousal and lasting declarative memory. Trends in Neurosciences, 21 (7), 294–299.pl_PL
dc.referencesDieleman G. C., van der Ende J., Verhulst F. C., Huizink A. C. (2010). Perceived and physiological arousal during a stress task: Can they differentiate between anxiety and depression? Psychoneuroendocrinology, 35 (8), 1223–1234.pl_PL
dc.referencesDolcos F., LaBar K. S., Cabeza R. (2004). Dissociable effects of arousal and valence on prefrontal activity indexing emotional evaluation and subsequent memory: An event-related fMRI study. Neuroimage, 23 (1), 64–74.pl_PL
dc.referencesDrebing C. J., Freedman R., Waldo M., Gerhardt G. A. (1989). Unconjugated methoxylated catecholamine metabolites in human saliva. Quantitation methodology and comparison with plasma levels. Biomedical chromatography, 3 (5), 217–220.pl_PL
dc.referencesEisenhofer G., Kopin I. J., Goldstein D. S. (2004). Catecholamine metabolism: A contemporary view with implications for physiology and medicine. Pharmacological Reviews, 56 (3), 331–349.pl_PL
dc.referencesFairclough S. H., Houston K. (2004). A metabolic measure of mental effort. Biological Psychology, 66 (2), 177–190.pl_PL
dc.referencesFan J., McCandliss B. D., Fossella J., Flombaum J. I., Posner M. I. (2005). The activation of attentional networks. NeuroImage, 26 (2), 471–9.pl_PL
dc.referencesFibiger W., Evans O., Singer G. (1986). Hormonal responses to a graded mental workload. European Journal of Applied Physiology and Occupational Physiology, 55 (4), 339–343.pl_PL
dc.referencesField T., Hernandez-Reif M., Diego M., Schanberg S., Kuhn C. (2005). Cortisol decreases and serotonin and dopamine increase following massage therapy. International Journal of Neuroscience, 115 (10), 1397–1413.pl_PL
dc.referencesFrankenhaeuser M., Dunne E., Lundberg U. (1976). Sex differences in sympathetic-adrenal medullary reactions induced by different stressors. Psychopharmacology, 47 (1), 1–5.pl_PL
dc.referencesFrankenhaeuser M., von Wright M. R., Collins A., von Wright J., Sedvall G., Swahn C. G. (1978). Sex differences in psychoneuroendocrine reactions to examination stress. Psychosomatic Medicine, 40 (4), 334–343.pl_PL
dc.referencesGalatzer-Levy I. R., Steenkamp M. M., Brown A. D., Qian M., Inslicht S., Henn-Haase C., Otte C., Yehuda R., Neylan T. C., Marmar C. R. (2014). Cortisol response to an experimental stress paradigm prospectively predicts long-term distress and resilience trajectories in response to active police service. Journal of Psychiatric Research, 56, 36–42.pl_PL
dc.referencesGerin W., Davidson K. W., Christenfeld N. J., Goyal T., Schwartz J. E. (2006). The role of angry rumination and distraction in blood pressure recovery from emotional arousal. Psychosomatic Medicine, 68 (1), 64–72.pl_PL
dc.referencesGoldstein D. S. (2010). Catecholamines 101. Clinical Autonomic Research, 20 (6), 331–352.pl_PL
dc.referencesGruen R. J., Ehrlich J., Silva R., Schweitzer J. W., Friedhoff A. J. (2000). Cognitive factors and stress-induced changes in catecholamine biochemistry. Psychiatry Research, 93, 55–61.pl_PL
dc.referencesHjemdahl P., Freyschuss U., Juhlin-Dannfelt A., Linde B. (1983). Differentiated sympathetic activation during mental stress evoked by the Stroop test. Acta Physiologica Scandinavica, 527, 25–29.pl_PL
dc.referencesHoriuchi S., Tsuda A., Okamura H., Yajima J., Steptoe A. (2010). Differential elicitation of the salivary 3-methoxy-4-hydroxyphenylglycol (MHPG) responses by mental stress testing. Japanese Journal of Behavioral Medicine, 16, 31–38.pl_PL
dc.referencesHowells F. M., Stein D. J., Russell V. A. (2010). Research perceived mental effort correlates with changes in tonic arousal during attentional tasks. Behavioral and Brain Functions, 6, 39.pl_PL
dc.referencesHou Y. P., Manns I. D., Jones B. E. (2002). Immunostaining of cholinergic pontomesencephalic neurons for α1 versus α2 adrenergic receptors suggests different sleep-wake state activities and roles. Neuroscience, 114 (3), 517–521.pl_PL
dc.referencesJanuszewicz W., Sznajderman M., Wocial B., Feltynowski T., Klonowicz T. (1979). The effect of mental stress on catecholamines, their metabolites and plasma renin activity in patients with essential hypertension and in healthy subjects. Clinical Science, 57 (5), 229–231.pl_PL
dc.referencesJennings J. R., Nebes R., Brock K. (1988). Memory retrieval in noise and psychophysiological response in the young and old. Psychophysiology, 25 (6), 633–644.pl_PL
dc.referencesJörgensen L. S., Bönlökke L., Ristensen N. J. (1985). Plasma adrenaline and noradrenaline during mental stress and isometric exercise in man. The role of arterial sampling. Scandinavian Journal of Clinical and Laboratory Investigation, 45 (5), 447–452.pl_PL
dc.referencesKennedy B., Dillon E., Mills P. J., Ziegler M. G. (2001). Catecholamines in human saliva. Life Sciences, 69 (1), 87–99.pl_PL
dc.referencesKirschbaum C., Klauer T., Filipp S. H., Hellhammer D. H. (1995). Sex-specific effects of social support on cortisol and subjective responses to acute psychological stress. Psychosomatic Medicine, 57 (1), 23–31.pl_PL
dc.referencesKuchel O. G., Kuchel G. A. (1991). Peripheral dopamine in pathophysiology of hypertension. Interaction with aging and lifestyle. Hypertension, 18 (6), 709–721.pl_PL
dc.referencesLake C. R., Chernow B., Feuerstein G., Goldstein D. S., Ziegler M. G. (1984). The sympathetic nervous system in man: Its evaluation and the measurement of plasma NE. Frontiers of Clinical Neuroscience, 2, 1–26.pl_PL
dc.referencesLeBlanc J., Ducharme M. B. (2007). Plasma dopamine and noradrenaline variations in response to stress. Physiology and Behavior, 91 (2), 208–211.pl_PL
dc.referencesLeistad R. B., Stovner L. J., White L. R., Nilsen K. B., Westgaard R. H., Sand T. (2007). Noradrenaline and cortisol changes in response to low-grade cognitive stress differ in migraine and tension-type headache. The Journal of Headache and Pain, 8 (3), 157–166.pl_PL
dc.referencesLi G. Y., Ueki H., Kawashima T., Sugataka K., Muraoka T., Yamada S. (2004). Involvement of the noradrenergic system in performance on a continuous task requiring effortful attention. Neuropsychobiology, 50 (4), 336–340.pl_PL
dc.referencesMcClelland D. C., Ross G., Patel V. (1985). The effect of an academic examination on salivary norepinephrine and immunoglobulin levels. Journal of Human Stress, 11, 52–59.pl_PL
dc.referencesMcClelland D. C., Patel V., Stier D., Brown D. (1987). The relationship of affiliative arousal to dopamine release. Motivation and Emotion, 11 (1), 51–66.pl_PL
dc.referencesMitome M., Shirakawa T., Kikuiri T., Oguchi H. (1997). Salivary catecholamine assay for assessing anxiety in pediatric dental patients. The Journal of Clinical Pediatric Dentistry, 21, 255–259.pl_PL
dc.referencesMorilak D. A., Barrera G., Echevarria D. J., Garcia A. S., Hernandez A., Ma S., Petre C. O. (2005). Role of brain norepinephrine in the behavioral response to stress. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29 (8), 1214–1224.pl_PL
dc.referencesMueller S. T., Piper B. J. (2014). The Psychology Experiment Building Language (PEBL) and PEBL Test Battery. Journal of Neuroscience Methods, 222, 250–259.pl_PL
dc.referencesNagy O., Kelemen O., Benedek G., Myers C. E., Shohamy D., Gluck M. A., Kéri S. (2007). Dopaminergic contribution to cognitive sequence learning. Journal of Neural Transmission, 114 (5), 607–612.pl_PL
dc.referencesNelson R. J. (2005). An introduction to behavioral endocrinology. Sunderland: Sinauer Associates.pl_PL
dc.referencesNg V., Koh D., Chia S. E. (2003). Examination stress, salivary cortisol, and academic performance. Psychological Reports, 93 (3f), 1133–1134.pl_PL
dc.referencesOkamura H., Tsuda A., Yajima J., Mark H., Horiuchi S., Toyoshima N., Matsuishi T. (2010). Short sleeping time and psychobiological responses to acute stress. International Journal of Psychophysiology, 78 (3), 209–214.pl_PL
dc.referencesPage M. E., Berridge C. W., Foote S. L., Valentino R. J. (1993). Corticotropin-releasing factor in the locus coeruleus mediates EEG activation associated with hypotensive stress. Neuroscience Letters, 164 (1), 81–84.pl_PL
dc.referencesPeters M. L., Godaert G. L., Ballieux R. E., van Vliet M., Willemsen J. J., Sweep F. C., Heijnen C. J. (1998). Cardiovascular and endocrine responses to experimental stress: Effects of mental effort and controllability. Psychoneuroendocrinology, 23 (1), 1–17.pl_PL
dc.referencesRevelle W., Loftus D. A. (2014). The implication of arousal effects for the study of affect and memory. [W:] Christianson S. A. (red.), The Handbook of Emotion and Memory: Research and Theory (s. 113–141). New York: Psychology Press.pl_PL
dc.referencesRivier C., Vale W. (1983). Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature, 305, 325–327.pl_PL
dc.referencesRudnicki K., Rutkowska A., Wieczorek M. (2015). Salivary 3-methoxy-4-hydroxyphenylglycol (MHPG) elevation after different types of cognitive effort. Manuskrypt złożony do publikacji w Applied Psychophysiology and Biofeedback.pl_PL
dc.referencesSamuels E. R., Szabadi E. (2008). Functional neuroanatomy of the noradrenergic locus coeruleus: Its roles in the regulation of arousal and autonomic function part I: Principles of functional organisation. Current Neuropharmacology, 6 (3), 235–53.pl_PL
dc.referencesSara S. J., Hervé-Minvielle A. (1995). Inhibitory influence of frontal cortex on locus coeruleus neurons. Proceedings of the National Academy of Sciences of the United States of America, 92, 6032–6036.pl_PL
dc.referencesSchommer N. C., Hellhammer D. H., Kirschbaum C. (2003). Dissociation between reactivity of the hypothalamus-pituitary-adrenal axis and the sympathetic-adrenal-medullary system to repeated psychosocial stress. Psychosomatic Medicine, 65 (3), 450–460.pl_PL
dc.referencesSchwab K. O., Heubel G., Bartels H. (1992). Free epinephrine, norepinephrine and dopamine in saliva and plasma of healthy adults. European Journal of Clinical Chemistry and Clinical Biochemistry: Journal of the Forum of European Clinical Chemistry Societies, 30 (9), 541–544.pl_PL
dc.referencesSmith S. M., Vale W. W. (2006). The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in Clinical Neuroscience, 8 (4), 383–391.pl_PL
dc.referencesSothmann M. S., Hart B. A., Horn T. S., Gustafson A. B. (1988). Plasma catecholamine and performance associations during psychological stress: Evidence for peripheral noradrenergic involvement with an attention-demanding task. Human Performance, 1 (1), 31–43.pl_PL
dc.referencesSugimoto K., Kanai A., Shoji N. (2009). The effectiveness of the Uchida-Kraepelin test for psychological stress: An analysis of plasma and salivary stress substances. BioPsychoSocial Medicine, 3 (5).pl_PL
dc.referencesSumiyoshi T., Yotsutsuji T., Kurachi M., Itoh H., Kurokawa K., Saitoh O. (1998). Effect of mental stress on plasma homovanillic acid in healthy human subjects. Neuropsychopharmacology, 19 (1), 70–73.pl_PL
dc.referencesSzymczak W. (2008). Podstawy statystyki dla psychologów: podręcznik akademicki. Warszawa: Centrum Doradztwa i Informacji Difin.pl_PL
dc.referencesThayer R. E. (1989). The Biopsychology of Mood and Arousal. New York: Oxford University Press.pl_PL
dc.referencesThibodeau M. A., Gómez-Pérez L., Asmundson G. J. (2012). Objective and perceived arousal during performance of tasks with elements of social threat: The influence of anxiety sensitivity. Journal of Behavior Therapy and Experimental Psychiatry, 43 (3), 967–974.pl_PL
dc.referencesTsuda A., Yajima J., Tsuda S. (2000). Experimental psychological approaches to stress. Japanese Journal of Stress Science, 15, 184–191.pl_PL
dc.referencesUrry H. L., van Reekum C. M., Johnstone T., Davidson R. J. (2009). Individual differences in some (but not all) medial prefrontal regions reflect cognitive demand while regulating unpleasant emotion. Neuroimage, 47 (3), 852–863.pl_PL
dc.referencesWeiner H. (1992). Perturbing the organism: The biology of stressful experience. Chicago: University of Chicago Press.pl_PL
dc.referencesWestphal N. J., Seasholtz A. F. (2006). CRH-BP: the regulation and function of a phylogenetically conserved binding protein. Frontiers in Bioscience, 11, 1878–1891.pl_PL
dc.referencesWilkinson D. J., Thompson J. M., Lambert G. W., Jennings G. L., Schwarz R. G., Jefferys D., Esler M. D. (1998). Sympathetic activity in patients with panic disorder at rest, under laboratory mental stress, and during panic attacks. Archives of General Psychiatry, 55 (6), 511–520.pl_PL
dc.referencesValentino R. J., Page M., Van Bockstaele E., Aston-Jones G. (1992). Corticotropin-releasing factor innervation of the locus coeruleus region: Distribution of fibers and sources of input. Neuroscience, 48 (3), 689–705.pl_PL
dc.referencesYajima J., Tsuda A., Kuwahata T., Yamada S. (2002). Relationship between psychoneuroimmunological responses induced by mental stress testing and general health state in human volunteers. Journal of Behavioral Medicine, 8 (1), 17–22.pl_PL
dc.referencesYamamoto T., Nishimura N., Tamiya S. (2010). MHPG measurement in saliva as an indicator of CNS activity. Clinical Neurophysiology, 121.pl_PL
dc.referencesYang R. K., Yehuda R., Holland D. D., Knott P. J. (1997). Relationship between 3-methoxy-4-hydroxyphenylglycol and homovanillic acid in saliva and plasma of healthy volunteers. Biological Psychiatry, 42 (9), 821–826.pl_PL
dc.referencesZouhal H., Jacob C., Delamarche P., Gratas-Delamarche A. (2008). Catecholamines and the effects of exercise, training and gender. Sports Medicine, 38 (5), 401–423.pl_PL
dc.contributor.authorEmailkjrudnicki@gmail.compl_PL
dc.contributor.authorEmailsandra@uni.lodz.plpl_PL
dc.contributor.authorEmailmarek@biol.uni.lodz.plpl_PL
dc.identifier.doi10.18778/1427-969X.19.05


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord