dc.contributor.author | Szymczak, Wiesław | |
dc.date.accessioned | 2016-06-14T06:50:14Z | |
dc.date.available | 2016-06-14T06:50:14Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1427-969X | |
dc.identifier.uri | http://hdl.handle.net/11089/18367 | |
dc.description | Artykuł ten składa się z fragmentów przygotowywanej do druku książki na temat wnioskowania
statystycznego. | pl_PL |
dc.description.abstract | Celem tej pracy jest zwrócenie uwagi badaczy wykorzystujących metody statystyczne
w analizie wyników swoich badań na pomieszanie dwóch różnych teorii testowania hipotez
statystycznych, teorii Fishera i teorii Neymana–Pearsona. Zawarcie, w obecnie stosowanym instrumentarium
statystycznym, pomysłów z obu tych teorii, powoduje, że znakomita większość badaczy
bez chwili namysłu za prawdziwą przyjmuje stwierdzenie, iż im mniejsze prawdopodobieństwo,
tym silniejsza zależność. Przedstawione zostały słabe strony teorii Neymana–Pearsona i wynikające
z nich problemy przy podejmowaniu decyzji w wyniku przeprowadzonych testów. Problemy te
stały się usprawiedliwionym poszukiwaniem mniej zawodnych rozwiązań, jednakże zaproponowane
mierniki wielkości efektu, jako wykorzystujące z jednej strony dogmat o związku między
wielkością prawdopodobieństwa w teście i siłą zależności, a z drugiej – brak jakichkolwiek podstaw
teoretycznych tego rozwiązania, wydają się jeszcze jednym pseudorozwiązaniem rzeczywiście występujących
problemów. Dodatkowo, wykorzystywanie mierników wielkości efektów wygląda na
próbę zwolnienia badaczy z głębokiego myślenia o uzyskanych wynikach z analizy statystycznej,
w kategoriach merytorycznych. Powstał trywialny przepis: odpowiednia wartość miernika natychmiast
implikuje siłę zależności – podejście takie wydaje się niegodne badacza. | pl_PL |
dc.description.abstract | The aim of this study is to draw the attention of researchers using statistical methods
in the analysis of the results of their research on the combination of two different theories testing
statistical hypothesis, Fisher’s theory and Neyman-Pearson’s theory. Including in the presently used
statistical instruments, ideas of both of these theories, causes that the vast majority of researchers
without a moment’s thought, acknowledge that the smaller the probability the stronger relationship.
The study presents the weaknesses of Neyman-Pearson’s theory and the resulting problems with
decision-making as a result of the conducted tests. These problems have become a justified quest
for less unreliable solutions, however, the proposed measures of the size effect as using on one
hand dogma about the relationship between the degree of probability in the test and the strength of
dependence, on the other, lack of any theoretical basis of this solution, seem to be another pseudo
solution to actual problems. Moreover, the use of measures of size effect seems to be an attempt to
free researchers from the profound thinking about the results obtained from the statistical analysis.
A trivial recipe was established: the corresponding value of the measures instantly implies the
strength of the relationship – this approach seems unworthy of the researcher. | pl_PL |
dc.language.iso | pl | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Psychologica;19 | |
dc.subject | teorie testowania hipotez statystycznych | pl_PL |
dc.subject | prawdopodobieństwo | pl_PL |
dc.subject | moc testu | pl_PL |
dc.subject | empiryczna moc testu | pl_PL |
dc.subject | wielkość efektu | pl_PL |
dc.subject | theories of statistical hypothesis testing | pl_PL |
dc.subject | probability | pl_PL |
dc.subject | power of test | pl_PL |
dc.subject | empirical power of test | pl_PL |
dc.subject | effect size | pl_PL |
dc.title | Pojęcie wielkości efektu na tle teorii Neymana-Pearsona testowania hipotez statystycznych | pl_PL |
dc.title.alternative | The concept of size effect in the light of Neyman-Pearson’s theory of testing statistical hypothesis | pl_PL |
dc.type | Article | pl_PL |
dc.rights.holder | © Copyright by Wiesław Szymczak, Łódź 2015; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2015 | pl_PL |
dc.page.number | [5]-41 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Nauk o Wychowaniu, Instytut Psychologii, Zakład Metodologii Badań Psychologicznych i Statystyki, 91-433 Łódź, ul. Smugowa nr 10/12. | pl_PL |
dc.identifier.eissn | 2353-4842 | |
dc.references | Agresti A. (1990). Categorical Data Analysis. New York: John Wiley and Sons. | pl_PL |
dc.references | Allen J., Le H. (2007). An additive measure of overall effect size for logistic regression models. Journal of Educational and Behavioral Statistics, 33, 416–441. | pl_PL |
dc.references | Anscombe F. J., Aumann R. J. (1963). A definition of subjective probability. The Annals of Mathematical Statistics, 34 (1), 199–205. | pl_PL |
dc.references | APA (2010). Publication Manual, 6th ed. Washington: American Psychological Association. | pl_PL |
dc.references | Berger J. O. (2003). Could Fisher, Jefreys and Neyman have agreed on testing? Statistical Sciences, 18 (1), 1–32. | pl_PL |
dc.references | Blalock H. M. (1975). Statystyka dla socjologów. Warszawa: PWN. | pl_PL |
dc.references | Blume J. D. (2002). Likelihood methods for measuring statistical evidence. Statistics in Medicine, 21, 2563–2599. | pl_PL |
dc.references | Christensen R. (2005). Testing Fisher, Neyman, Pearson, and Bayes. The American Statistician, 59 (2), 121–126. | pl_PL |
dc.references | Chinn S. (2000). A simple method for converting an odds ratio to effect size for use in meta-analysis. Statistics in Medicine, 19 (22), 3127–3131. | pl_PL |
dc.references | Chow S. L. (1996). Statistical Significance: Rationale, Validity and Utility. London: Sage Publications. | pl_PL |
dc.references | Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Hillsdale: Lawrence Erlbaum Associates, Inc. | pl_PL |
dc.references | Cohen J. (1992). Statistical power analysis. Current Directions in Psychological Sciences, 1 (3), 98–101. | pl_PL |
dc.references | Denis D. J. (2003). Alternatives to null hypothesis significance testing. Theory and Science, 4 (1), 1–17. | pl_PL |
dc.references | Dienes Z. (2011). Bayesian versus orthodox statistics: Which side are you on? Perspective on Psychological Science, 6 (3), 274–290. | pl_PL |
dc.references | Dooling D. J., Danks J. H. (1975). Going beyond tests of significance: Is psychology ready? Bulletin of the Psychonomic Society, 5, 15–17. | pl_PL |
dc.references | Dudek B. (2007). Stres związany z pracą: teoretyczne i metodologiczne podstawy badań zależności między zdrowiem a stresem zawodowym. [W:] M. Górnik-Durose, B. Kożusznik (red.), Perspektywy psychologii pracy (s. 220–246). Katowice: Wydawnictwo Uniwersytetu Śląskiego. | pl_PL |
dc.references | Favreau O. E. (1997). Sex and gender comparison: Does null hypothesis testing create a false dichotomy? Feminism and Psychology, 7, 63–81. | pl_PL |
dc.references | Field A. (2009). Discovering Statistics Using SPSS, 3rd ed. London: Sage Publications. | pl_PL |
dc.references | Fisher R. A. (1935). The logic of inductive inference (with discussion). Journal of the Royal Statistical Society, 98 (1), 39–82. | pl_PL |
dc.references | Fisz M. (1969). Rachunek prawdopodobieństwa i statystyka matematyczna. Warszawa: PWN. | pl_PL |
dc.references | Greenland S., Maclure M., Schlesselman J. J., Poole C., Morgenstern H. (1991). Standardized regression coefficients: A further critique and review of some alternatives. Epidemiology, 2 (5), 387–392. | pl_PL |
dc.references | Greenland S., Schlesselman J. J., Criqui M. H. (1986). The fallacy of employing standardized regression coefficients and correlations as measures of effect. American Journal of Epidemiology, 123 (2), 203–208. | pl_PL |
dc.references | Greń J. (1968). Modele i zadania statystyki matematycznej. Warszawa: PWN. | pl_PL |
dc.references | Hilbe J. M. (2009). Logistic Regression Models. Boca Raton: Chapman and Hall/CRC. | pl_PL |
dc.references | Hoenig J. M., Heisey D. M. (2001). The abuse of power: The pervasive fallacy of power calculations for data analysis. The American Statistician, 55 (1), 19–24. | pl_PL |
dc.references | Hosmer D. W., Lemeshow L. (1989). Applied Logistic Regression. New York: John Wiley and Sons. | pl_PL |
dc.references | Hubbard R., Armstrong J. S. (2006). Why we don’t really know what “statistical significance” means: A major educational failure. Journal of Marketing Education, 28 (2), 114–120. | pl_PL |
dc.references | Hubbard R., Bayarri M. J. (2003). Confusion over measures of evidence (p’s) versus errors (α’s) in classical statistical testing. The American Statistician, 57 (3), 171–182. | pl_PL |
dc.references | Inman H. F. (1994). Karl Pearson and R. A. Fisher on statistical tests: A 1935 exchange from nature. The American Statistician, 48 (1), 2–11. | pl_PL |
dc.references | Jeffreys H. (1961). Theory of Probability, London: Oxford University Press. | pl_PL |
dc.references | Jones L. V., Tukey J. W. (2000). A sensible formulation of the significance test. Psychological Methods, 5 (4), 411–414. | pl_PL |
dc.references | Karni E. (1993). A definition of subjective probabilities with state-dependent preferences. Econometrica, 61 (1), 187–198. | pl_PL |
dc.references | Kelley K., Preacher K. J. (2012). On effect size. Psychological Methods, 17 (2), 137–152. | pl_PL |
dc.references | Killeen P. R. (2005). An alternative to null-hypothesis significance tests. Psychological Science, 16 (5), 345–353. | pl_PL |
dc.references | Kline R. B. (2013). Beyond Significance Testing. Statistics Reform in the Bahavioral Sciences, 2nd ed. Washington: American Psychological Association. | pl_PL |
dc.references | Kołmogorow A. N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin: Springer-Verlag. Za: H. Bauer (1968). Probability Theory and Elements of Measure Theory. New York: Holt, Rinehart and Winston, Inc. | pl_PL |
dc.references | Laplace P. S. (1812). Theorie analytique des probabilites. Paris: Courcier. | pl_PL |
dc.references | Lehmann E. L. (1993). The Fisher, Neyman-Pearson theories of testing hypotheses: One theory or two? Journal of the American Statistical Association, 88 (424), 1242–1249. | pl_PL |
dc.references | Lehmann E. L. (1995). Neyman’s Statistical Philosophy. Probability and Mathematical Statistics, 15, 29–36. | pl_PL |
dc.references | Lenth R. V. (2007). Post hoc power: Tables and commentary. Technical Report No. 378, The University of Iowa, Department of Statistics and Actuarial Sciences, July, 1–13. | pl_PL |
dc.references | Levine T. R., Weber R., Hullett C., Park H. S., Lindsey L. L. M. (2008). A critical assessment of null hypothesis significance testing in quantitative communication research. Human Communication Research, 34, 171–187. | pl_PL |
dc.references | Lindgren B. W. (1962). Statistical Theory. New York: The Macmillan Co. | pl_PL |
dc.references | Lindquist E. F. ([1938] 1993). A first course in statistics. Cambridge: Houghton Miffilin. Za: C. J. Huberty. Historical origins of statistical testing practices: The treatment of Fisher versus Neyman-Pearson views in textbooks. Journal of Experimental Education, 61 (4), 317–333. | pl_PL |
dc.references | Machina M. J., Schmeidler D. (1992). A more robust definition of subjective probability. Econometrica, 60 (4), 745–780. | pl_PL |
dc.references | Magee L. (1990). R2 measures based on Wald and likelihood ratio joint significance tests. The American Statistician, 44 (3), 250–253. | pl_PL |
dc.references | Magiera R. (2007). Modele i metody statystyki matematycznej. Cz. II. Wnioskowanie statystyczne, wyd. 2 rozszerz. Wrocław: Oficyna Wydawnicza GiS. | pl_PL |
dc.references | Manthey J. (2010). Elementary Statistics: A History of Controversy. Boston: AMATYC 2010 Conference – Bridging Past to Future Mathematics, 11–14 November. | pl_PL |
dc.references | Menard S. (2000). Coefficients of determination for multiple logistic regression analysis. The American Statistician, 54 (1), 17–24. | pl_PL |
dc.references | Mises R. von (1936). Wahrscheinlichkeit, Statistik und Wahrheit. Wienna: Springer Verlag. | pl_PL |
dc.references | Nagelkerke N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78 (3), 691–692. | pl_PL |
dc.references | Neyman J. (1977). Frequentist probability and frequentist statistics. Synthese, 36, 97–131. | pl_PL |
dc.references | Neyman J., Pearson E. S. (1933). On the problem of the most efficient tests of statistical hypotheses. Philosophical Transactions of the Royal Society of London. Series A, 231, 289–337. Za: E. L. Lehmann (1995). Neyman’s statistical philosophy. Probability and Mathematical Statistics, 15, 29–36. | pl_PL |
dc.references | O’Keefe D. J. (2007). Post hoc power, observed power, a priori power, retrospective power, prospective power, achieved power: Sorting out appropriate uses of statistical power analyses. Communications Methods and Measures, 1 (4), 291–299. | pl_PL |
dc.references | Onwuegbuzie A. J., Leech N. L. (2004). Post hoc power: A Concept whose time has come. Understanding Statistics, 3 (4), 201–230. | pl_PL |
dc.references | Papoulis A. (1972). Prawdopodobieństwo, zmienne losowe i procesy stochastyczne. Warszawa: Wydawnictwa Naukowo-Techniczne. | pl_PL |
dc.references | Rao C. R. (1982). Modele liniowe statystyki matematycznej. Warszawa: PWN. | pl_PL |
dc.references | Rasch D. (2012). Hypothesis testing and the error of the third kind. Psychological Test and Assessment Modeling, 54 (1), 90–99. | pl_PL |
dc.references | Roberts S., Pashler H. (2000). How persuasive is a good fit? A comment on theory testing. Psychological Review, 107 (2), 358–367. | pl_PL |
dc.references | Rodgers J. L. (2010). The epistemology of mathematical and statistical modeling. A quiet methodological revolution. American Psychologist, 65 (1), 1–12. | pl_PL |
dc.references | Rosenthal R. (1991). Metaanalytic Procedures for Social Research, 2nd ed. Newbury Park: Sage. | pl_PL |
dc.references | Rosnow R. L., Rosenthal R. (2005). Beginning behavioural research: A conceptual primer, 5th ed. Englewood Cliffs NJ: Pearson/Prentice Hall. | pl_PL |
dc.references | Royall R. (2000). On the probability of observing misleading statistical evidence (with comments). Journal of the American Statistical Association, 95 (451), 760–780. | pl_PL |
dc.references | Royall R. (1997). Statistical Evidence. A Likelihood Paradigm. London: Chapman and Hall/CRC. | pl_PL |
dc.references | Sedlmeier P., Gigerenzer G. (1989). Do studies of statistical power have an effect on the power of studies? Psychological Bulletin, 105 (2), 309–316. | pl_PL |
dc.references | Seltman H. J. (2014). Experimental design and analysis. Chapter 12: Statistical power, http://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf [dostęp: 10.12.2014]. | pl_PL |
dc.references | Silvey S. D. (1978). Wnioskowanie statystyczne. Warszawa: PWN. | pl_PL |
dc.references | Sink C. A., Mvududu N. H. (2010). Statistical power, sampling, and effect sizes: Three keys to research relevancy. Counseling Outcome Research and Evaluation, 1 (2), 1–18. | pl_PL |
dc.references | Sterne J. A. C. (2002). Teaching hypothesis tests – time for significant change? Statistics in Medicine, 21 (7), 985–994. | pl_PL |
dc.references | Szymczak W. (2010). Podstawy statystyki dla psychologów. wyd. 2 popr. Warszawa: Difin. | pl_PL |
dc.references | Tabachnick B. G., Fidell L. S. (2007). Using Multivariate Statistics, 5th ed. Boston: Pearson Education, Inc. | pl_PL |
dc.references | Thalheimer W., Cook S. (2002). How to calculate effect sizes from published research articles: A simplified methodology, http://work-learning.com/effect_sizes.htm [dostęp: 28.08.2012]. | pl_PL |
dc.references | Thompson B. (1994). The concept of statistical significance testing. Practical Assessment, Research and Evaluation, 4, 5. | pl_PL |
dc.references | Valentine J. C., Cooper H. (2003). Effect Size Substantive Interpretation Guidelines: Issues in the Interpretation of Effect Sizes. Washington: What Works Clearinghouse. | pl_PL |
dc.references | Volker M. A. (2006). Reporting effect size estimates in school psychology research. Psychology in the Schools, 43 (6), 653–672. | pl_PL |
dc.references | Williams R. H., Zimmerman D. W. (1989). Statistical power analysis and reliability of measurement. Journal of General Psychology, 116 (4), 359–369. | pl_PL |
dc.references | Zubrzycki S. (1970). Wykłady z rachunku prawdopodobieństwa i statystyki matematycznej. Warszawa: PWN. | pl_PL |
dc.contributor.authorEmail | wieszym@uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.18778/1427-969X.19.01 | |