Show simple item record

dc.contributor.authorSzymczak, Wiesław
dc.date.accessioned2016-06-14T06:50:14Z
dc.date.available2016-06-14T06:50:14Z
dc.date.issued2015
dc.identifier.issn1427-969X
dc.identifier.urihttp://hdl.handle.net/11089/18367
dc.descriptionArtykuł ten składa się z fragmentów przygotowywanej do druku książki na temat wnioskowania statystycznego.pl_PL
dc.description.abstractCelem tej pracy jest zwrócenie uwagi badaczy wykorzystujących metody statystyczne w analizie wyników swoich badań na pomieszanie dwóch różnych teorii testowania hipotez statystycznych, teorii Fishera i teorii Neymana–Pearsona. Zawarcie, w obecnie stosowanym instrumentarium statystycznym, pomysłów z obu tych teorii, powoduje, że znakomita większość badaczy bez chwili namysłu za prawdziwą przyjmuje stwierdzenie, iż im mniejsze prawdopodobieństwo, tym silniejsza zależność. Przedstawione zostały słabe strony teorii Neymana–Pearsona i wynikające z nich problemy przy podejmowaniu decyzji w wyniku przeprowadzonych testów. Problemy te stały się usprawiedliwionym poszukiwaniem mniej zawodnych rozwiązań, jednakże zaproponowane mierniki wielkości efektu, jako wykorzystujące z jednej strony dogmat o związku między wielkością prawdopodobieństwa w teście i siłą zależności, a z drugiej – brak jakichkolwiek podstaw teoretycznych tego rozwiązania, wydają się jeszcze jednym pseudorozwiązaniem rzeczywiście występujących problemów. Dodatkowo, wykorzystywanie mierników wielkości efektów wygląda na próbę zwolnienia badaczy z głębokiego myślenia o uzyskanych wynikach z analizy statystycznej, w kategoriach merytorycznych. Powstał trywialny przepis: odpowiednia wartość miernika natychmiast implikuje siłę zależności – podejście takie wydaje się niegodne badacza.pl_PL
dc.description.abstractThe aim of this study is to draw the attention of researchers using statistical methods in the analysis of the results of their research on the combination of two different theories testing statistical hypothesis, Fisher’s theory and Neyman-Pearson’s theory. Including in the presently used statistical instruments, ideas of both of these theories, causes that the vast majority of researchers without a moment’s thought, acknowledge that the smaller the probability the stronger relationship. The study presents the weaknesses of Neyman-Pearson’s theory and the resulting problems with decision-making as a result of the conducted tests. These problems have become a justified quest for less unreliable solutions, however, the proposed measures of the size effect as using on one hand dogma about the relationship between the degree of probability in the test and the strength of dependence, on the other, lack of any theoretical basis of this solution, seem to be another pseudo solution to actual problems. Moreover, the use of measures of size effect seems to be an attempt to free researchers from the profound thinking about the results obtained from the statistical analysis. A trivial recipe was established: the corresponding value of the measures instantly implies the strength of the relationship – this approach seems unworthy of the researcher.pl_PL
dc.language.isoplpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Psychologica;19
dc.subjectteorie testowania hipotez statystycznychpl_PL
dc.subjectprawdopodobieństwopl_PL
dc.subjectmoc testupl_PL
dc.subjectempiryczna moc testupl_PL
dc.subjectwielkość efektupl_PL
dc.subjecttheories of statistical hypothesis testingpl_PL
dc.subjectprobabilitypl_PL
dc.subjectpower of testpl_PL
dc.subjectempirical power of testpl_PL
dc.subjecteffect sizepl_PL
dc.titlePojęcie wielkości efektu na tle teorii Neymana-Pearsona testowania hipotez statystycznychpl_PL
dc.title.alternativeThe concept of size effect in the light of Neyman-Pearson’s theory of testing statistical hypothesispl_PL
dc.typeArticlepl_PL
dc.rights.holder© Copyright by Wiesław Szymczak, Łódź 2015; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2015pl_PL
dc.page.number[5]-41pl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Nauk o Wychowaniu, Instytut Psychologii, Zakład Metodologii Badań Psychologicznych i Statystyki, 91-433 Łódź, ul. Smugowa nr 10/12.pl_PL
dc.identifier.eissn2353-4842
dc.referencesAgresti A. (1990). Categorical Data Analysis. New York: John Wiley and Sons.pl_PL
dc.referencesAllen J., Le H. (2007). An additive measure of overall effect size for logistic regression models. Journal of Educational and Behavioral Statistics, 33, 416–441.pl_PL
dc.referencesAnscombe F. J., Aumann R. J. (1963). A definition of subjective probability. The Annals of Mathematical Statistics, 34 (1), 199–205.pl_PL
dc.referencesAPA (2010). Publication Manual, 6th ed. Washington: American Psychological Association.pl_PL
dc.referencesBerger J. O. (2003). Could Fisher, Jefreys and Neyman have agreed on testing? Statistical Sciences, 18 (1), 1–32.pl_PL
dc.referencesBlalock H. M. (1975). Statystyka dla socjologów. Warszawa: PWN.pl_PL
dc.referencesBlume J. D. (2002). Likelihood methods for measuring statistical evidence. Statistics in Medicine, 21, 2563–2599.pl_PL
dc.referencesChristensen R. (2005). Testing Fisher, Neyman, Pearson, and Bayes. The American Statistician, 59 (2), 121–126.pl_PL
dc.referencesChinn S. (2000). A simple method for converting an odds ratio to effect size for use in meta-analysis. Statistics in Medicine, 19 (22), 3127–3131.pl_PL
dc.referencesChow S. L. (1996). Statistical Significance: Rationale, Validity and Utility. London: Sage Publications.pl_PL
dc.referencesCohen J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2nd ed. Hillsdale: Lawrence Erlbaum Associates, Inc.pl_PL
dc.referencesCohen J. (1992). Statistical power analysis. Current Directions in Psychological Sciences, 1 (3), 98–101.pl_PL
dc.referencesDenis D. J. (2003). Alternatives to null hypothesis significance testing. Theory and Science, 4 (1), 1–17.pl_PL
dc.referencesDienes Z. (2011). Bayesian versus orthodox statistics: Which side are you on? Perspective on Psychological Science, 6 (3), 274–290.pl_PL
dc.referencesDooling D. J., Danks J. H. (1975). Going beyond tests of significance: Is psychology ready? Bulletin of the Psychonomic Society, 5, 15–17.pl_PL
dc.referencesDudek B. (2007). Stres związany z pracą: teoretyczne i metodologiczne podstawy badań zależności między zdrowiem a stresem zawodowym. [W:] M. Górnik-Durose, B. Kożusznik (red.), Perspektywy psychologii pracy (s. 220–246). Katowice: Wydawnictwo Uniwersytetu Śląskiego.pl_PL
dc.referencesFavreau O. E. (1997). Sex and gender comparison: Does null hypothesis testing create a false dichotomy? Feminism and Psychology, 7, 63–81.pl_PL
dc.referencesField A. (2009). Discovering Statistics Using SPSS, 3rd ed. London: Sage Publications.pl_PL
dc.referencesFisher R. A. (1935). The logic of inductive inference (with discussion). Journal of the Royal Statistical Society, 98 (1), 39–82.pl_PL
dc.referencesFisz M. (1969). Rachunek prawdopodobieństwa i statystyka matematyczna. Warszawa: PWN.pl_PL
dc.referencesGreenland S., Maclure M., Schlesselman J. J., Poole C., Morgenstern H. (1991). Standardized regression coefficients: A further critique and review of some alternatives. Epidemiology, 2 (5), 387–392.pl_PL
dc.referencesGreenland S., Schlesselman J. J., Criqui M. H. (1986). The fallacy of employing standardized regression coefficients and correlations as measures of effect. American Journal of Epidemiology, 123 (2), 203–208.pl_PL
dc.referencesGreń J. (1968). Modele i zadania statystyki matematycznej. Warszawa: PWN.pl_PL
dc.referencesHilbe J. M. (2009). Logistic Regression Models. Boca Raton: Chapman and Hall/CRC.pl_PL
dc.referencesHoenig J. M., Heisey D. M. (2001). The abuse of power: The pervasive fallacy of power calculations for data analysis. The American Statistician, 55 (1), 19–24.pl_PL
dc.referencesHosmer D. W., Lemeshow L. (1989). Applied Logistic Regression. New York: John Wiley and Sons.pl_PL
dc.referencesHubbard R., Armstrong J. S. (2006). Why we don’t really know what “statistical significance” means: A major educational failure. Journal of Marketing Education, 28 (2), 114–120.pl_PL
dc.referencesHubbard R., Bayarri M. J. (2003). Confusion over measures of evidence (p’s) versus errors (α’s) in classical statistical testing. The American Statistician, 57 (3), 171–182.pl_PL
dc.referencesInman H. F. (1994). Karl Pearson and R. A. Fisher on statistical tests: A 1935 exchange from nature. The American Statistician, 48 (1), 2–11.pl_PL
dc.referencesJeffreys H. (1961). Theory of Probability, London: Oxford University Press.pl_PL
dc.referencesJones L. V., Tukey J. W. (2000). A sensible formulation of the significance test. Psychological Methods, 5 (4), 411–414.pl_PL
dc.referencesKarni E. (1993). A definition of subjective probabilities with state-dependent preferences. Econometrica, 61 (1), 187–198.pl_PL
dc.referencesKelley K., Preacher K. J. (2012). On effect size. Psychological Methods, 17 (2), 137–152.pl_PL
dc.referencesKilleen P. R. (2005). An alternative to null-hypothesis significance tests. Psychological Science, 16 (5), 345–353.pl_PL
dc.referencesKline R. B. (2013). Beyond Significance Testing. Statistics Reform in the Bahavioral Sciences, 2nd ed. Washington: American Psychological Association.pl_PL
dc.referencesKołmogorow A. N. (1933). Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin: Springer-Verlag. Za: H. Bauer (1968). Probability Theory and Elements of Measure Theory. New York: Holt, Rinehart and Winston, Inc.pl_PL
dc.referencesLaplace P. S. (1812). Theorie analytique des probabilites. Paris: Courcier.pl_PL
dc.referencesLehmann E. L. (1993). The Fisher, Neyman-Pearson theories of testing hypotheses: One theory or two? Journal of the American Statistical Association, 88 (424), 1242–1249.pl_PL
dc.referencesLehmann E. L. (1995). Neyman’s Statistical Philosophy. Probability and Mathematical Statistics, 15, 29–36.pl_PL
dc.referencesLenth R. V. (2007). Post hoc power: Tables and commentary. Technical Report No. 378, The University of Iowa, Department of Statistics and Actuarial Sciences, July, 1–13.pl_PL
dc.referencesLevine T. R., Weber R., Hullett C., Park H. S., Lindsey L. L. M. (2008). A critical assessment of null hypothesis significance testing in quantitative communication research. Human Communication Research, 34, 171–187.pl_PL
dc.referencesLindgren B. W. (1962). Statistical Theory. New York: The Macmillan Co.pl_PL
dc.referencesLindquist E. F. ([1938] 1993). A first course in statistics. Cambridge: Houghton Miffilin. Za: C. J. Huberty. Historical origins of statistical testing practices: The treatment of Fisher versus Neyman-Pearson views in textbooks. Journal of Experimental Education, 61 (4), 317–333.pl_PL
dc.referencesMachina M. J., Schmeidler D. (1992). A more robust definition of subjective probability. Econometrica, 60 (4), 745–780.pl_PL
dc.referencesMagee L. (1990). R2 measures based on Wald and likelihood ratio joint significance tests. The American Statistician, 44 (3), 250–253.pl_PL
dc.referencesMagiera R. (2007). Modele i metody statystyki matematycznej. Cz. II. Wnioskowanie statystyczne, wyd. 2 rozszerz. Wrocław: Oficyna Wydawnicza GiS.pl_PL
dc.referencesManthey J. (2010). Elementary Statistics: A History of Controversy. Boston: AMATYC 2010 Conference – Bridging Past to Future Mathematics, 11–14 November.pl_PL
dc.referencesMenard S. (2000). Coefficients of determination for multiple logistic regression analysis. The American Statistician, 54 (1), 17–24.pl_PL
dc.referencesMises R. von (1936). Wahrscheinlichkeit, Statistik und Wahrheit. Wienna: Springer Verlag.pl_PL
dc.referencesNagelkerke N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78 (3), 691–692.pl_PL
dc.referencesNeyman J. (1977). Frequentist probability and frequentist statistics. Synthese, 36, 97–131.pl_PL
dc.referencesNeyman J., Pearson E. S. (1933). On the problem of the most efficient tests of statistical hypotheses. Philosophical Transactions of the Royal Society of London. Series A, 231, 289–337. Za: E. L. Lehmann (1995). Neyman’s statistical philosophy. Probability and Mathematical Statistics, 15, 29–36.pl_PL
dc.referencesO’Keefe D. J. (2007). Post hoc power, observed power, a priori power, retrospective power, prospective power, achieved power: Sorting out appropriate uses of statistical power analyses. Communications Methods and Measures, 1 (4), 291–299.pl_PL
dc.referencesOnwuegbuzie A. J., Leech N. L. (2004). Post hoc power: A Concept whose time has come. Understanding Statistics, 3 (4), 201–230.pl_PL
dc.referencesPapoulis A. (1972). Prawdopodobieństwo, zmienne losowe i procesy stochastyczne. Warszawa: Wydawnictwa Naukowo-Techniczne.pl_PL
dc.referencesRao C. R. (1982). Modele liniowe statystyki matematycznej. Warszawa: PWN.pl_PL
dc.referencesRasch D. (2012). Hypothesis testing and the error of the third kind. Psychological Test and Assessment Modeling, 54 (1), 90–99.pl_PL
dc.referencesRoberts S., Pashler H. (2000). How persuasive is a good fit? A comment on theory testing. Psychological Review, 107 (2), 358–367.pl_PL
dc.referencesRodgers J. L. (2010). The epistemology of mathematical and statistical modeling. A quiet methodological revolution. American Psychologist, 65 (1), 1–12.pl_PL
dc.referencesRosenthal R. (1991). Metaanalytic Procedures for Social Research, 2nd ed. Newbury Park: Sage.pl_PL
dc.referencesRosnow R. L., Rosenthal R. (2005). Beginning behavioural research: A conceptual primer, 5th ed. Englewood Cliffs NJ: Pearson/Prentice Hall.pl_PL
dc.referencesRoyall R. (2000). On the probability of observing misleading statistical evidence (with comments). Journal of the American Statistical Association, 95 (451), 760–780.pl_PL
dc.referencesRoyall R. (1997). Statistical Evidence. A Likelihood Paradigm. London: Chapman and Hall/CRC.pl_PL
dc.referencesSedlmeier P., Gigerenzer G. (1989). Do studies of statistical power have an effect on the power of studies? Psychological Bulletin, 105 (2), 309–316.pl_PL
dc.referencesSeltman H. J. (2014). Experimental design and analysis. Chapter 12: Statistical power, http://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf [dostęp: 10.12.2014].pl_PL
dc.referencesSilvey S. D. (1978). Wnioskowanie statystyczne. Warszawa: PWN.pl_PL
dc.referencesSink C. A., Mvududu N. H. (2010). Statistical power, sampling, and effect sizes: Three keys to research relevancy. Counseling Outcome Research and Evaluation, 1 (2), 1–18.pl_PL
dc.referencesSterne J. A. C. (2002). Teaching hypothesis tests – time for significant change? Statistics in Medicine, 21 (7), 985–994.pl_PL
dc.referencesSzymczak W. (2010). Podstawy statystyki dla psychologów. wyd. 2 popr. Warszawa: Difin.pl_PL
dc.referencesTabachnick B. G., Fidell L. S. (2007). Using Multivariate Statistics, 5th ed. Boston: Pearson Education, Inc.pl_PL
dc.referencesThalheimer W., Cook S. (2002). How to calculate effect sizes from published research articles: A simplified methodology, http://work-learning.com/effect_sizes.htm [dostęp: 28.08.2012].pl_PL
dc.referencesThompson B. (1994). The concept of statistical significance testing. Practical Assessment, Research and Evaluation, 4, 5.pl_PL
dc.referencesValentine J. C., Cooper H. (2003). Effect Size Substantive Interpretation Guidelines: Issues in the Interpretation of Effect Sizes. Washington: What Works Clearinghouse.pl_PL
dc.referencesVolker M. A. (2006). Reporting effect size estimates in school psychology research. Psychology in the Schools, 43 (6), 653–672.pl_PL
dc.referencesWilliams R. H., Zimmerman D. W. (1989). Statistical power analysis and reliability of measurement. Journal of General Psychology, 116 (4), 359–369.pl_PL
dc.referencesZubrzycki S. (1970). Wykłady z rachunku prawdopodobieństwa i statystyki matematycznej. Warszawa: PWN.pl_PL
dc.contributor.authorEmailwieszym@uni.lodz.plpl_PL
dc.identifier.doi10.18778/1427-969X.19.01


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record