Pokaż uproszczony rekord

dc.contributor.authorBalcerzak, Bogdan
dc.contributor.authorPierzchalski, Antoni
dc.date.accessioned2016-06-01T11:24:20Z
dc.date.available2016-06-01T11:24:20Z
dc.date.issued2013
dc.identifier.issn0232-704X
dc.identifier.urihttp://hdl.handle.net/11089/18230
dc.description.abstractGeneralized O(n) -gradients for connections on Lie algebroids are derived.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Netherlandspl_PL
dc.relation.ispartofseriesAnnals of Global Analysis and Geometry;3
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectLie algebroidpl_PL
dc.subjectConnectionpl_PL
dc.subjectStein-Weiss gradientspl_PL
dc.subjectYoung diagramspl_PL
dc.subjectLaplace type operatorspl_PL
dc.subjectWeitzenböck formulaspl_PL
dc.titleGeneralized gradients on Lie algebroidspl_PL
dc.typeArticlepl_PL
dc.page.number319–337pl_PL
dc.contributor.authorAffiliationLodz University of Technology, Institute of Mathematicspl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Faculty of Mathematics and Computer Sciencepl_PL
dc.identifier.eissn1572-9060
dc.referencesAhlfors, L.V.: Invariant operators and integral representations in hyperbolic spaces. Math. Scand. 36, 27–43 (1975)pl_PL
dc.referencesBalcerzak, B., Kubarski, J., Walas, W.: Primary characteristic homomorphism of pairs of Lie algebroids and Mackenzie algebroid. Banach Center Publ. 54, 135–173 (2001)pl_PL
dc.referencesBalcerzak, B., Kalina, J., Pierzchalski, A.: Weitzenböck formula on Lie algebroids. Bull. Polish Acad. Sci. Math. 60, 165–176 (2012)pl_PL
dc.referencesBartoszek, A., Kalina, J., Pierzchalski, A.: Gradients for SL(q) -foliations. J. Geom. Phys. 61, 2410–2416 (2011)pl_PL
dc.referencesBranson, T., Gilkey, P.B., Ørsted, B., Pierzchalski, A.: Heat equation asymptotics of a generalized Ahlfors Laplacian on a manifold with boundary. In: Operator Theory: Advances and Applications, vol. 57, Birkhäuser Verlag, Basel, pp. 1–13 (1992)pl_PL
dc.referencesBranson, T.: Stein-Weiss operators and ellipticity. J. Funct. Anal. 151, 334–383 (1997)pl_PL
dc.referencesGrabowski, J., Urbański, P.: Lie algebroid and Poisson-Nijenhuis structure. Rep. Math. Phys. 40, 195–208 (1997)pl_PL
dc.referencesHiggins, P.J., Mackenzie, K.C.H.: Algebraic constructions in the category of Lie algebroids. J. Algebra 129, 194–230 (1990)pl_PL
dc.referencesKalina, J., Ørsted, B., Pierzchalski, A., Walczak, P., Zhang, F.: Elliptic gradients and highest weights. Bull. Acad. Polon. Sci. Ser. Math. 44(4), 511–519 (1996)pl_PL
dc.referencesKalina, J., Pierzchalski, A., Walczak, P.: Only one of generalized gradients can be elliptic. Ann. Polon. Math. 67(2), 111–120 (1997)pl_PL
dc.referencesKosmann-Schwarzbach, Y., Laurent-Gengoux, C., Weinstein, A.: Modular classes of Lie algebroid morphisms. Transform. Groups 13, 727–755 (2008)pl_PL
dc.referencesMackenzie, K.C.H.: General Theory of Lie Groupoids and Lie Algebroids. London Mathematical Society Lecture Note Series 213, Cambridge University Press, Cambridge (2005)pl_PL
dc.referencesMarle, C.-M.: Calculus on Lie algebroids, Lie groupoids and Poisson manifolds. Dissert. Math. 457, 1–57 (2008)pl_PL
dc.referencesMaxim-Raileanu, L.: Cohomology of Lie algebroids. An. Sti. Univ. “Al. I. Cuza” Iasi Sect. I a Mat. (N.S.) 22(2), 197–199 (1976)pl_PL
dc.referencesNarasimhan, R.: Analysis on Real and Complex Manifolds. North-Holland, 2nd edn. Springer- Verlag, New York (1985)pl_PL
dc.referencesØrsted, B., Pierzchalski, A.: The Ahlfors Laplacian on a Riemannian manifold. In: Constantin Caratheodory: an international tribute, 2, World Scientific, Teaneck, pp. 1021–1049 (1991)pl_PL
dc.referencesØrsted, B., Pierzchalski, A.: The Ahlfors Laplacian on a Riemannian manifold with boundary. Michigan Math. J. 43(1), 99–122 (1996)pl_PL
dc.referencesPierzchalski, A.: On quasiconformal deformations of manifolds and hypersurfaces. In: Proceedings of the Second Finnish-Polish Summer School in Complex Analysis, Jyväskylä, Bericht Univ. Jyvä skylä Math. Inst. 28, 79–94 (1984)pl_PL
dc.referencesPierzchalski, A.: Some differential operators connected with quasiconformal deformations on manifolds. In: Partial differential equations. Banach Center Publ. 19, 205–212 (1987)pl_PL
dc.referencesPierzchalski, A.: Ricci curvature and quasiconformal deformations of a Riemannian manifold. Manuscr. Math. 66, 113–127 (1989)pl_PL
dc.referencesReimann, H.M.: A rotation invariant differential equation for vector fields. Ann. Sc. Norm. Super. Pisa Cl. Sci. 9(4), 159–174 (1982)pl_PL
dc.referencesReimann, H.M.: Invariant system of differential operators. In: Proceeding of a seminar held in Torino May-June 1982, Topics in modern harmonic analysis, Instituto di alta Matematica, Roma (1983)pl_PL
dc.referencesStein, E., Weiss, G.: Generalization of the Cauchy-Riemann equations and representations of the rotation group. Amer. J. Math. 90, 163–196 (1968)pl_PL
dc.referencesWeyl, H.: The Classical Groups. Princeton University Press, Princeton (1945)pl_PL
dc.contributor.authorEmailantoni@math.uni.lodz.plpl_PL
dc.identifier.doi10.1007/s10455-013-9368-y
dc.date.defence2013
dc.relation.volume44pl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska