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1 Introduction

Gradients or generalized gradients in the sense of Stein and Weiss are first order differential
operators that are irreducible summands of the covariant derivative ∇. More exactly, if one
starts from any vector bundle E over M , a differential manifold, and terminates together with
∇ in the bundle T ∗M ⊗ E and if, additionally, one has a Lie group G acting both on T ∗M and
E (and such a group is always strictly associated to the geometric structure considered on M),
then one can think on splitting both the origin bundle E and the target bundle T ∗M ⊗ E onto
direct sums of G-irreducible invariant subbundles. Then, the restriction of∇ to any one of such
subbundles of E composed with the projection onto any one of T ∗M ⊗E is just a G-gradient.
We are mainly interested in O(n)-gradients, i.e., in the case G = O(n). The exact definition
is given in Sect. 2. Gradients are then the simplest bricks the covariant derivative is build
of. O(n)-gradients were introduced first in 1968 by Stein and Weiss in their famous paper
Generalization of the Cauchy-Riemann equations and representations of the rotation group
[23]. Their theory developed next into a pretty large branch of global analysis, geometry,
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e-mail: bogdan.balcerzak@p.lodz.pl

A. Pierzchalski (B)
Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Łódź, Poland
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differential operators or representation theory. Many natural first order linear differential
operators in Riemannian geometry are either gradients or their compositions. For example,
the exterior and interior derivatives d and δ, respectively, the Cauchy-Riemann operator ∂

are gradients while the classical Dirac operator on exterior forms, namely, d + δ is their
sum. Gradients depend on the geometry of M (the group G) and this is obvious, but, on the
other hand, they can themselves, e.g., by their spectral properties, determine, to some extent
the geometry (volume, area of the boundary, scalar curvature), cf. [20,16,5,17]. The nice
algebraic properties of gradients made that their theory can be successfully developed in the
category of Lie algebroids.

A Lie algebroid over a manifold M is a vector bundle A over M with a homomor-
phism of vector bundles �A : A → T M called an anchor, and a real Lie algebra structure
(� (A) , [[·, ·]]) such that [[a, f · b]] = f · [[a, b]] + �A (a) ( f ) · b for all a, b ∈ � (A),
f ∈ C∞ (M). A Lie algebroid with a surjective anchor is called transitive. Any smooth
manifold M defines a Lie algebroid, where A = T M with the identity anchor and the nat-
ural Lie algebra of vector fields on M . Other examples of Lie algebroids are: Lie algebras,
integrable distributions, in particular foliations, cotangent bundles of Poisson manifolds,
Lie algebroids of principal bundles. For more complete treatment of Lie algebroids and its
connections we refer to [8,11–13] and [2].

The bundle A is equipped here with a Riemannian metric g extended then naturally to the
whole tensor algebra over A.

Two important cases: the skew-symmetric forms and the trace-free symmetric tensors
taken as the origin bundle are investigated in detail. In both of them the covariant derivative
splits exactly into three pieces. One of our aim is getting a possibly full analogy and harmony
in description of this two quite antipodal cases. The splittings coincide in the case of one
tensors. Further similarities are as follows. Exactly one term of the splitting is—in both the
cases—an elliptic operator in the sense that its symbol is injective. The suitable compositions
of two terms lead to second order strongly elliptic operators: the Hodge-Laplacian �a in the
first case and an analogous differential operator �s in the other. Both of them are, like ∇∗∇,
of metric symbol. As an application we derive the Weitzenböck type formulas in both the
cases. It is interesting in its own that the zero order terms in the formulas are compositions of
three summands in each case. The first is equivalent to the Ricci tensor in the classical case
so it reflects the curvature of ∇. The two others reflect a deviation of ∇ from being metric
and torsion-free, respectively.

It would be interesting to derive exact curvature terms in some particular cases and study
their geometric meaning. It would be also interesting to investigate analogue problems for
other geometric structures, in particular spinor one, what should lead to operators of the Dirac
and the Rarita-Schwinger type.

2 Connections and generalized gradients on Lie algebroids

Let (A, �A, [[·, ·]]) be a Lie algebroid over a manifold M and let n be the dimension of the
fiber of A. By an A-connection in a vector bundle E we mean a homomorphism ∇ : A →
A (E) of vector bundles A and A (E), which commutes with anchors, and where A (E)

is the Lie algebroid of the vector bundle E (see [12]). The module CDO (E) of sections
of A (E) is the space of all covariant differential operators in E , i.e. R-linear operators
� : � (E) → � (E) such that there is (unique) X� ∈ X (M) satisfying � ( f e) = f � (e) +
X� ( f ) e for all f ∈ C∞ (M) and e ∈ � (E). ∇ determines a C∞ (M)-linear operator of
modules of sections which will also be denoted by ∇ and also called an A-connection.
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By the curvature of an A-connection ∇ : � (A) → CDO (E) in E we mean the 2-form

R∇ ∈ �
(∧2 A∗ ⊗ End (E)

)
defined by

R∇
a,b = ∇a ◦ ∇b − ∇b ◦ ∇a − ∇[[a,b]], a, b ∈ � (A) . (2.1)

Notice that R∇ is zero if and only if ∇ is a homomorphism of Lie algebras (∇ preserves Lie
brackets).

In the case where E = A, by a torsion of ∇ we mean the 2-form T ∇ ∈ �
(∧2 A∗ ⊗ A

)

given by

T ∇ (a, b) = ∇a (b) − ∇b (a) − [[a, b]], a, b ∈ � (A) . (2.2)

If T ∇ = 0, ∇ is called torsion-free.
Denote the vector bundles

⊗k A∗ and
⊗

A∗ by A∗⊗k and by A∗⊗, respectively.
Let

∧k A∗ and Sk A∗ denote the subbundles of skew-symmetric and symmetric k-tensors
of

⊗k A∗. Let

∇ : � (A) −→ CDO (A)

be an A-connection in the vector bundle A. Extend ∇ in a natural way to the dual bundle by
the formula

(∇ab∗) (c) = �A (a)
(
b∗ (c)

) − b∗ (∇ac)

for all a, c ∈ � (A) , b∗ ∈ � (A∗) and next by the Leibniz rule, to the whole tensor algebra
of A. The extended connection will be denoted by the same symbol ∇. In particular,

∇a (ζ ) (a1, . . . , ak) = �A (a) (ζ (a1, . . . , ak)) −
k∑

j=1

ζ
(
a1, . . . ,∇aa j , . . . , ak

)
(2.3)

for ζ ∈ �
(

A∗⊗k
)
, a, a j ∈ � (A). So, ∇ can be treated as the differential operator ∇ :

�
(

A∗⊗k
) → �

(
A∗⊗k+1

)
given by

(∇ζ ) (a1, a2 . . . , ak+1) = (∇a1ζ
)
(a2, . . . , ak+1) (2.4)

for ζ ∈ �
(

A∗⊗k
)
, a j ∈ � (A).

Lemma 2.1

∇ζ =
n∑

j=1

a∗
j ⊗ ∇a j ζ (2.5)

for any ζ ∈ �
(

A∗⊗)
and any dual local frames (a1, . . . , an) of A and

(
a∗

1 , . . . , a∗
n

)
of A∗.

Proof Observe that

n∑
j=1

a∗
j ⊗ ∇a j : �

(
A∗⊗) −→ �

(
A∗⊗)

is a derivation in the tensor algebra. So, it remains to show (2.5) for functions and sections
of A∗. And this is just a calculation. 	


Define the second covariant derivative by

∇2
a,bζ = ∇a (∇bζ ) − ∇∇abζ, ζ ∈ �

(
A∗⊗)

, a, b ∈ � (A) . (2.6)
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Lemma 2.2

R∇
a,bζ = ∇2

a,bζ − ∇2
b,aζ + ∇T ∇ (a,b)ζ (2.7)

for ζ ∈ �
(

A∗⊗)
, a, b ∈ � (A).

Proof Simple consequence of (2.1), (2.2) and (2.6). 	

Suppose that g is a Riemannian metric in A. g defines in a usual manner the unique metric

in A∗, which can be extended to the metric 〈·, ·〉g in the vector bundle A∗⊗k by putting
〈

k⊗
i=1

a∗
i ,

k⊗
j=1

b∗
j

〉

g

=
k∏

l=1

〈
a∗

l , b∗
l

〉
g

and next, by the restriction, to the metric in the bundles
∧k A∗ and Sk A∗, respectively. Notice

that the metric in
∧k A∗ differs then by a multiplicative constant from that defined by the

determinant:
〈
a∗

1 ∧ . . . ∧ a∗
k , b∗

1 ∧ . . . b∗
k

〉
g = k! det

(〈
a∗

i , b∗
j

〉
g

)
.

Now we are ready to define O(n)-gradients on A, where n is the dimension of fibers.
Since the fibres of A are Euclidean spaces, O(n) acts on them in a natural way. Obviously,
the action can be extended to A∗⊗. Decompose the space A∗⊗k into a direct sum of irreducible
invariant subspaces:

A∗⊗k =
⊕

α

Vα. (2.8)

For every α, denote by jα : Vα → A∗⊗k the natural injection defined by (2.8). Next, take
any α and split the bundle A∗ ⊗ Vα into a direct sum

A∗ ⊗ Vα =
⊕

β

Wβ (2.9)

of invariant irreducible subbundles Wβ . If the multiplicities are one—and it is the case of
our considerations—this decomposition is unique. Denote by πβ : A∗ ⊗ Vα → Wβ the
projections defined by the splitting (2.9).

For any α, β the first order differential operator

∇αβ = Pαβ = πβ ◦ ∇ ◦ jα : � (Vα) −→ �
(
Wβ

)
(2.10)

is called a generalized gradient or a Stein-Weiss operator.

Theorem 2.1

∇αβ = πβ ◦
⎛
⎝

n∑
j=1

a∗
j ⊗ ∇a j

⎞
⎠ ◦ jα

for any dual local frames (a1, . . . , an) of A and
(
a∗

1 , . . . , a∗
n

)
of A∗.

Proof Simple consequence of (2.10) and Lemma 2.1. 	

The simplest example is the case k = 1. The origin bundle A∗⊗1 = A∗ is irreducible

(O(n) acts on A∗ transitively) but the target bundle A∗⊗2 splits into three O(n)-irreducible
invariant subbundles:

A∗⊗2 =
∧2

A∗ ⊕ Sk
o A∗ ⊕ Sk

tr A∗,
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where∧2 A∗ is the subbundle of skew-symmetric tensors,
Sk

o A∗ is the subbundle of symmetric and trace-free tensors,

Sk
tr A∗ is the subbundle of pure traces, i.e. tensors of the form cg, c ∈ R.

Consequently, the three projections π1, π2, π3 are given by:

π1 = 1

2

∑
σ∈S2

sgnσ σ, π2 = 1

2

∑
σ∈S2

σ − 1

n
gtr, π3 = 1

n
gtr,

where the action of a permutation σ ∈ Sp on a p-tensor ζ ∈ A∗⊗p is given by

(σζ )
(
a1, . . . , ap

) = ζ
(
aσ−1(1), . . . , aσ−1(p)

)
, (2.11)

and tr is the trace with respect to g. So, for the metric and torsion-free connection ∇, the
Stein-Weiss operators in this case are

P1 = π1∇ = 1

2
d, P2 = π2∇ = S, P3 = π3∇ = − 1

n
gδ (2.12)

and

∇ = 1

2
d + S − 1

n
gδ,

where d and δ are usual operators of exterior derivative and coderivative, respectively, defined
generally later (cf. (3.1) and (3.4)), Sα = ∇Sα+ 1

n δα ·g, α ∈ ∧1 A∗ (∇S is the symmetrized
∇), is known as the Cauchy-Ahlfors operator of [1,18,19].

Come back to the general case. For any k > 1 and any ζ ∈ �(A∗⊗k) define its trace
trζ = tr1,2ζ , i.e. the trace with respect to the first two arguments by

(trζ ) (a1, . . . , ak−2) =
n∑

j=1

ζ
(
e j , e j , a1, . . . , ak−2

)
(2.13)

where (e1, . . . , en) is a local orthonormal frame of A. trζ = 0 for ζ ∈ �(A∗⊗1).
Define the coderivative operator

∇∗ : �(A∗⊗k) −→ �(A∗⊗k−1)

by

∇∗ζ = −tr (∇ζ ) . (2.14)

In case A is the tangent bundle of a Riemannian manifold M the operator ∇∗ reduces to
the classical adjoint operator to the Levi-Civita ∇. More exactly, ∇ and ∇∗ are there formally
adjoint with respect to the global (integral) scalar product on M .

Lemma 2.3

∇∗ζ = −
n∑

j=1

ie j

(∇e j ζ
)

(2.15)

for any ζ ∈ �(A∗⊗) and any local orthonormal frame (e1, . . . , en) of A.

Proof One can easily see that the right-hand side of (2.15) is independent of choice of the
frame. The rest of the proof is just a calculation. 	
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To understand the notion of gradients let us recall how tensors split under the action of
the orthogonal group. The splitting can be explicitly described by the Young diagrams and
by successive process of removing traces. We will follow here the construction of O(n)-
irreducible splitting given by Weyl in [24] (cf. also [10] or [4]). For the sake of simplicity let
us reduce our consideration to a single fibre of a bundle.

Let E be a vector space over R of dimension n. Fix p ∈ N and take a sequence of integers
α = (α1, . . . , αr ) with α1 ≥ · · · ≥ αr ≥ 1, α1 + · · · + αr = p. Such an α is called a Young
scheme of length p. It can be represented by a figure consisting of r rows of squares such that
the number of the squares in the j th row is α j . A Young scheme can be filled with numbers
1, . . . , p distributed in the squares in any order. A scheme filled with numbers is called a
Young diagram.

Take a Young diagram α filled with numbers that grow both in rows and in columns.
Denote by Hα and Vα the subgroup of the symmetric group Sp consisting of all permutations
preserving rows and columns, respectively. The diagram α determines the Young symmetrizer
πα : E⊗p → E⊗p, E⊗p = ⊗p E , which is a linear operator given by

πα =
∑

τ∈Hα,σ∈Vα

sgnσ · τσ.

Here the action of the permutation σ ∈ Sp on tensors is defined in (2.11). It is known that
πα is a projection up to a multiplicative constant, i.e. π2

α = mαπα for some mα ∈ N and that
Eα = Imπα is an invariant irreducible subspace of E⊗p for the standard representation of
GL(n) in E⊗p . Moreover,

E⊗p =
⊕

α

Eα.

Assume that E is equipped with a scalar product g. For 1 ≤ i1 < i2 ≤ p and ζ ∈ E⊗p

define the i1, i2th trace of ζ as the contraction of g and ζ taken with respect to i1, i2th
arguments of ζ . More exactly:

(
tri1,i2ζ

)
(ν1, . . . , νp−2) =

n∑
i=1

ζ
(
ν1, . . . , νi1−1, ei , νi1 , . . . , νi2−2, ei , νi2−1, . . . , νp−2

)

where (e1, . . . , en) is an orthonormal frame of E . ζ is said to be trace-free if tri1i2(ζ ) = 0
for 1 ≤ i1 < i2 ≤ p. It is obvious that the space E⊗p

0 of all trace-free tensors is a linear

subspace of E⊗p .
(

E⊗p
0

)⊥
is the subspace of all tensors of the form

∑
σ∈Sp

σ(g ⊗ ζα) (2.16)

where ζα ∈ E⊗p−2. The intersection Eα0 = Eα ∩ E⊗p
0 is non-trivial if and only if the sum

of the lengths of the first two columns of the Young diagram α is ≤ n. Every such diagram
is called admissible. The corresponding space Eα0 is invariant and irreducible under the
O(n)-action and

E⊗p
0 =

⊕
α

Eα0 (2.17)

where α ranges over the set of all admissible Young diagrams with numbers growing
both in rows and columns. Using (2.16) and (2.17), and proceeding with the analogous
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decompositions of E⊗p−2, E⊗p−4, etc., one gets the decomposition of E⊗p into the direct
(in fact, orthogonal) sum of irreducible O(n)-invariant subspaces.

Among Young diagrams particularly interesting are that composed of a single column or
of a single row only. In the first case α = (1, 1, . . . , 1) , 1 + 1 + · · · + 1 = p, 1

p!πα = Alt

is the alternator. In the other one α = (p) , 1
p!πα = Sym is the symmetrizer. As a result

the generalized gradients are then the terms of the covariant derivative acting on the space
of skew-symmetric forms—in the first case, while they are the terms acting on the space of
symmetric forms—in the other. These two important cases will be the subject of the next two
sections.

All the considerations of the chapter apply of course to spaces of local sections of bundles
considered below.

3 Gradients on the skew-symmetric forms

Let (A, �A, [[·, ·]]) be a Lie algebroid over a manifold M and let A = ⊕
p≥0 A k , where

A k = �(
∧k A∗), be the C∞ (M)-module of skew-symmetric differential forms on the Lie

algebroid A. A is an algebra over the ring C∞ (M) with the multiplication defined in the
classical way:

∧ : A p × A q −→ A p+q ,

(ω ∧ η)
(
a1, . . . , ap+q

) =
∑

σ∈S(p,q)

sgnσ · ω
(
aσ(1), . . . , aσ(p)

) · η
(
aσ(p+1), . . . , aσ(p+q)

)
,

where S (p, q) is the set of (p, q)-shuffles. Let μ∧
ω : A q → A p+q denote the operator of

multiplication by ω ∈ A p given by

μ∧
ω (η) = ω ∧ η for η ∈ A q .

Recall that the exterior derivative d : A k → A k+1 (cf. [14]) is defined by

(dη) (a1, . . . , ak+1) =
k+1∑
j=1

(−1) j−1 �A
(
a j

) (
η

(
a1, . . . â j . . . , ak+1

))
(3.1)

+
∑
i< j

(−1)i+ j η
([[ai , a j ]], a1, . . . âi . . . â j . . . , ak+1

)
.

Let ∇ be an A-connection in A. Define the operator da : A k → A k+1 by

(
daη

)
(a1, . . . , ak+1) =

k+1∑
j=1

(−1) j−1 (∇a j η
) (

a1, . . . â j . . . , ak+1
)
. (3.2)

A simple relation between d and da describes the following

Lemma 3.1

da = d + dT

where(
dT η

)
(a1, . . . , ak+1) =

∑
i< j

(−1)i+ j η
(

T ∇ (
ai , a j

)
, a1, . . . âi . . . â j . . . , ak+1

)

for any η ∈ A k, a1, . . . , ak+1 ∈ � (A).
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Notice that if ∇ is torsion-free, da = d (cf. also [3]). Notice also that in a general case da

is just—up to multiplicative constant—the alternation of ∇. Namely,

daη = (k + 1) · Alt (∇η) (3.3)

where η ∈ A k , and where for any ζ ∈ A∗⊗p its alternation Altζ is defined by

Altζ = 1

p!
∑
σ∈Sp

sgnσ (σζ ) .

Observe that ∇ defined by (2.4) and restricted to A k can be treated as the following operator
∇ : A k → �(A∗ ⊗ ∧k A∗).

By the exterior coderivative da∗ we mean the restriction of the coderivative operator given
in (2.14) to the space of skew-symmetric tensors:

da∗ = ∇∗∣∣
A k : A k −→ A k−1. (3.4)

Define two operators. The antisymmetric-trace

tra : �

(
A∗ ⊗

∧k
A∗

)
−→ A k−1

as the restriction of the trace operator given in (2.13) to sections of A∗ ⊗ ∧k A∗ and the
antisymmetric-cotrace

cotra : A k−1 −→ �

(
A∗ ⊗

∧k
A∗

)

given by

ib
(
cotraη

) = (ibg) ∧ η,

i.e. explicitly

(
cotraη

)
(a0, . . . ak) =

k∑
s=1

(−1)s−1 g (a0, as) · η (a1, . . . âs . . . ak)

for η ∈ A k−1, b, a0, . . . ak ∈ � (A).

Lemma 3.2 The operators cotraη and k · tra are conjugate in the following sense cotra =
k · (tra)∗ or more exactly:

〈
cotra (η) , ξ

〉
g = 〈

η, k · traξ
〉
g (3.5)

for η ∈ A k−1, ξ ∈ �(A∗ ⊗ ∧k A∗).
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Proof Let η ∈ A k−1, α ∈ � (A∗) , ζ ∈ A k, (e1, . . . , en) be an orthonormal local frame of
A. Then

〈
α ⊗ ζ, cotra (η)

〉
g

=
n∑

i0,...,ik=1

α
(
ei0

) · ζ
(
ei1 , . . . , eik

) · cotra (η)
(
ei0 , . . . , eik

)

=
n∑

i0,...,ik=1

k∑
s=1

α
(
ei0

) · ζ
(
eis , ei1 , . . . êis . . . , eik

) · g
(
ei0 , eis

) · η
(
ei1 , . . . êis . . . , eik

)

=
n∑

i1,...,ik=1

k∑
s=1

α
(
eis

) · ζ
(
eis , ei1 , . . . êis . . . , eik

) · η
(
ei1 , . . . êis . . . , eik

)

=
k∑

s=1

n∑

i1,...̂is ...,ik=1

tra (α ⊗ ζ )
(
ei1 , . . . êis . . . , eik

) · η
(
ei1 , . . . êis . . . , eik

)

= k
n∑

i1,...,ik−1=1

tra (α ⊗ ζ )
(
ei1 , . . . , eik−1

) · η
(
ei1 , . . . , eik−1

)

= 〈k · tr (α ⊗ ζ ) , η〉g .

	

Lemma 3.3

tra (
cotraη

) = (n − k + 1) η (3.6)

for any η ∈ A k−1.

Proof Let η ∈ A k−1, α ∈ � (A∗) , ζ ∈ A k, (e1, . . . , en) be an orthonormal local frame of
A, i2, . . . , ik ∈ {1, . . . , n}. Then

tr
(
cotraη

) (
ei2 , . . . , eik

) =
n∑

i1=1

(
cotraη

) (
ei1 , ei1 , ei2 , . . . , eik

)

=
n∑

i1=1

k∑
s=1

(−1)s−1 g
(
ei1 , eis

)
η

(
ei1 , . . . êis . . . , eik

)

=
n∑

i1=1

g
(
ei1 , ei1

)
η

(
ei2 , . . . , eik

) +
n∑

i1=1

k∑
s=2

(−1)s−1 g
(
ei1 , eis

)
η

(
ei1 , . . . êis . . . , eik

)

= n · η
(
ei2 , . . . , eik

) +
k∑

s=2

(−1)s−1 g
(
eis , eis

)
η

(
eis , ei2 , . . . êis . . . , eik

)

= n · η
(
ei1 , . . . , eik

) − (k − 1) · η
(
ei1 , . . . , eik

)

= (n − k + 1) · η
(
ei1 , . . . , eik

)
.

	

Define three linear mappings

πa
1 , πa

2 , πa
3 : �

(
A∗ ⊗

∧k
A∗

)
−→ �

(
A∗ ⊗

∧k
A∗

)
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by

πa
1 = Alt, πa

2 = id − πa
1 − πa

3 , πa
3 = 1

n − k + 1
cotra ◦ tra .

Lemma 3.4
〈
πa

1 ζ, πa
3 η

〉
g = 〈

πa
1 ζ, πa

2 η
〉
g = 〈

πa
2 ζ, πa

3 η
〉
g = 0

for ζ, η ∈ �(A∗ ⊗ ∧k A∗).

Proof Let ζ, η ∈ �(A∗ ⊗∧k A∗). Since πa
1 ζ and πa

2 ζ have zero traces, (3.5) implies at once
that

〈
πa

1 ζ, πa
3 η

〉
g = 0 and

〈
πa

2 ζ, πa
3 η

〉
g = 0. Hence

〈
πa

1 ζ, πa
2 η

〉
g = 〈

πa
1 ζ, η

〉
g − 〈

πa
1 ζ, πa

1 η
〉
g .

If α ⊗ ζo, β ⊗ ηo ∈ �(A∗ ⊗ ∧k A∗) , then

〈
πa

1 (α ⊗ ζo) , β ⊗ ηo
〉
g = 〈Alt (α ⊗ ζo) , β ⊗ ηo〉g

=
n∑

i0,...,ik=1

Alt (α ⊗ ζo)
(
ei0 , . . . , eik

) · (β ⊗ ηo)
(
ei0 , . . . , eik

)

= 1

k + 1

n∑
i0,...,ik=1

k∑
s=0

(−1)s α
(
eis

) · ζo
(
ei0 , . . . êis . . . , eik

) · β
(
ei0

) · ηo
(
ei1 , . . . , eik

)

= 〈Alt (α ⊗ ζo) , Alt (β ⊗ ηo)〉g = 〈
πa

1 (α ⊗ ζo) , πa
1 (β ⊗ ηo)

〉
g .

Consequently,
〈
πa

1 ζ, πa
2 η

〉
g = 0. 	


Theorem 3.1 πa
1 , πa

2 , πa
3 are projections and �(A∗ ⊗∧k A∗) splits onto the direct (in fact,

orthogonal) sum of O(n)-invariant subspaces:

�

(
A∗ ⊗

∧k
A∗

)
= Imπa

1 ⊕ Imπa
2 ⊕ Imπa

3 . (3.7)

Proof The orthogonality of the splitting follows from Lemma 3.4. Clearly, πa
1 is a projection.

πa
3 is a projection by Lemma 3.3. Since πa

1 and πa
3 are projections, πa

2 ◦ πa
2 = πa

2 +(
πa

1 ◦ πa
3 + πa

3 ◦ πa
1

)
. By the orthogonality, πa

1 ◦πa
3 = 0 and πa

3 ◦πa
1 = 0. So, πa

2 ◦πa
2 = 0.

	

Remark 3.1 For k �= n

4 �= k+1 the orthogonal subspaces in the splitting (3.7) are irreducible.

For n = 4k or n = 4(k + 1) the origin bundle
∧ n

4 A∗ splits
∧ n

4+ A∗ ⊕ ∧ n
4− A∗ where

+/− denotes the subbundles of
∧ n

4 A∗being the eigenspaces of the Hodge star operator,
respectively.

Notice that Imπa
1 = A k+1. Elements of Imπa

1 ⊕ Imπa
2 are trace-free tensors, i.e. traη = 0

for η ∈ Imπa
1 ⊕ Imπa

2 , so elements of Imπa
3 may be called pure traces.

Define the Stein-Weiss type operators

Pa
j = πa

j ◦ ∇ : A k −→ �

(
A∗ ⊗

∧k
A∗

)
, j ∈ {1, 2, 3} .
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Theorem 3.2

∇ = Pa
1 + Pa

2 + Pa
3 .

Moreover,

Pa
1 = 1

k + 1
da, Pa

2 = ∇ − 1

k + 1
da + 1

n − k + 1
cotra ◦ da∗,

Pa
3 = −1

n − k + 1
cotra ◦ da∗.

Proof Simple consequence of (3.3), (3.4) and Theorem 3.1. 	

Remark 3.2 To get gradients in (3.7) for the exceptional cases, compose Pa

1 with the pro-

jections onto
∧ n

4+ A∗ and
∧ n

4− A∗ for n = 4k, or restrict the origin bundle to one of
∧ n

4+ A∗,∧ n
4− A∗ for n = 4 (k + 1) .

Notice that in the case k = 1 the splitting of ∇ reduces to that in (2.12) where Pa
1 =

P1, Pa
2 = P2, Pa

3 = P3.
Notice also that Pa

2 is the only elliptic operator of the three ones in the sense of injectivity
of its symbol. For a linear operator P : � (F) → � (F) of order m in a vector bundle F its
symbol at a given point x ∈ M is defined by

σP (ω, e) = P
(

f mη
)
(x)

where ω ∈ A∗
x is such that ω = (d f ) (x) for some smooth function f satisfying f (x) =

0, e ∈ Fx , η ∈ �(F) and η (x) = e (cf. [15]); one can see that the definition is independent
both of f and of η with η(x) = e. In our case σPa

1
(ω, ·) = 1

k+1μ∧
ω, σd∗a (ω, ·) = −tr ◦ μ⊗

ω .

So, σPa
3

(ω, ·) = 1
n−k+1 cotra ◦ tr ◦ μ⊗

ω , and

σPa
2

(ω, ·) = μ⊗
ω − 1

k + 1
μ∧

ω − 1

n − k + 1
cotra ◦ tr ◦ μ⊗

ω ,

where μ⊗
ω is a tensor multiplication by ω. One can check (cf. [18]) that if A is transitive,

the σPa
2

(ω, ·) is injective for all ω �= 0. The ellipticity of Pa
2 follows also from the general

theory of gradients (cf. [6,9,10]).

4 Weitzenböck formula for skew-symmetric tensors

Define three differential operators of order zero. The Ricci type operator Ra : A → A by

(
Raη

)
(a1, . . . , ak) =

n∑
j=1

k∑
s=1

(−1)s−1
(
R∇

e j ,as
η
) (

e j , a1, . . . âs . . . , ak
)
, (4.1)

the operator T a : A → A by

(
T aη

)
(a1, . . . , ak) =

n∑
j=1

k∑
s=1

(−1)s−1
(
∇T ∇(e j ,as)η

)
(a1, . . . âs . . . , ak) , (4.2)
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and next, the operator Ma : A → A by

(
Maη

)
(a1, . . . , ak) =

n∑
j=1

k∑
s=1

(−1)s−1 (
i∇as e j ie j + ie j i∇as e j

)
(∇η) (a1, . . . âs . . . , ak) ,

(4.3)

where η ∈ A k, a1, . . . , ak ∈ � (A) , (e1, . . . , en) is a local orthonormal frame of A, R∇ is
the curvature tensor of the connection ∇ : � (A) → CDO(

∧k A∗). The first one Ra is like
in the classical approach the trace of the curvature tensor. The next T a reflects a deviation of
the connection from being torsion-free. And the last Ma measures a non-compatibility of ∇
with the metric. Notice that, by (2.7),

(
Raη

)
(a1, . . . , ak) =

n∑
j=1

k∑
s=1

(−1)s−1
(
∇2

e j ,as
η − ∇2

as ,e j
η
) (

e j , a1, . . . âs . . . , ak
)

+ (
T aη

)
(a1, . . . , ak) .

(4.4)

The Laplace operator on differential forms on the Lie algebroid A is defined by

�a = da∗da + dada∗.

One can see that if A is transitive, �a is a second order strongly elliptic operator with the
metric symbol σ�a (ω, η) = |ω|2 η.

In much the same way as in [3] write the explicit formulas for the two summands of �:
(
d∗d∗aη

)
(a1, . . . , ak) = −tr∇2η (a1, . . . , ak)

+
n∑

j=1

k∑
s=1

(−1)s−1
(
∇2

e j ,as
η
) (

e j , a1, . . . âs . . . , ak
)

and
(
dad∗∗η

)
(a1, . . . , ak) = − (

Maη
)
(a1, . . . , ak)

−
n∑

j=1

k∑
s=1

(−1)s−1
(
∇2

as ,e j
η
) (

e j , a1, . . . âs . . . , ak
)

for any η ∈ A k, a1, . . . , ak ∈ � (A) and for any local orthonormal frame (e1, ..., en) of A.
As a result we have the following

Theorem 4.1 (Weitzenböck Formula)

�a = ∇∗∇ + Ra − T a − Ma (4.5)

where Ra, T a and Ma are the operators defined in (4.1)–(4.3).

Consider some particular cases. If ∇ is metric, i.e. if

(�A ◦ a) (g (b, c)) = g (∇ab, c) + g (b,∇ac) for all a, b, c ∈ � (A) ,

the operator Ma vanishes.
If there exists a local orthonormal frame of sections (e1, . . . , en) with the property

∇ei e j
∣∣
x = 0 at a single point x ∈ M (for example if A = F ⊂ T M is an integrable
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distribution on M and ∇ is the Levi-Civita connection), then Ma = 0. The assumption
of existence of a local orthonormal frame of sections that have vanishing covariant deriva-
tives at a single point implies that the isotropy algebra of A (i.e. ker �A|x ) is abelian, and
consequently, T a = 0.

If ∇ is a torsion-free A-connection on A, then da = d is the exterior derivative on A given
in (3.1), and obviously T a = 0.

Notice additionally that if ∇ is metric and A is oriented, the Hodge star operator ∗ is well
defined on A , and then da∗η = (−1)n(p+1)+1 ∗ da ∗ η for any η ∈ A p (cf. [3]).

5 Gradients on the symmetric forms

Let S k be the C∞ (M)-module of all symmetric differential forms, i.e. the module of
sections of the symmetric subbundle Sk A∗ of A∗⊗k and S = ⊕

k≥0 S k . Let S k
o ={

ω ∈ S k : trω = 0
}

be the submodule of S k of sections of the bundle Sk
o A∗ of all zero-trace

tensors in Sk A∗, and let So = ⊕
k≥0 S k

o . Obviously, S is an algebra over the ring C∞ (M)

with the multiplication � : S p × S q → S p+q given by

(ζ � η)
(
a1, . . . , ap+q

) =
∑

σ∈S(p,q)

ζ
(
aσ(1), . . . , aσ(p)

) · η
(
aσ(p+1), . . . , aσ(p+q)

)
.

Let μ�
ζ : S q → S p+q denote the operator of multiplication by ζ ∈ S p:

μ�
ζ (η) = ζ � η for η ∈ S q .

The Lie algebroid structure on A and the A-connection ∇ determine the symmetric and
R-bilinear bracket {·, ·} : � (A) × � (A) → � (A) by

{a, b} = − (∇ab + ∇ba) .

Observe that {a, f · b} = f · {a, b} − �A (a) ( f ) · b for all a, b ∈ � (A) and f ∈ C∞ (M).
In this way A has the structure of a pseudo-Lie algebroid in the sense of [7] with the bracket
{·, ·} and −�A and �A as the left and the right anchor, respectively.

Define the symmetric derivative d: S k → S k+1 by

(dη) (a1, . . . , ak+1) =
k+1∑
j=1

ρA
(
a j

) (
η

(
a1, . . . â j . . . , ak+1

))

+
∑
i< j

η
({

ai , a j
}
, a1, . . . âi . . . â j . . . , ak+1

)

and the operator ds : S k → S k+1 by

(
dsη

)
(a1, . . . , ak+1) =

k+1∑
j=1

(∇a j η
) (

a1, . . . â j . . . , ak+1
)

(5.1)

for η ∈ S k, a1, . . . , ak+1 ∈ � (A).
Observe that

d = ds = (k + 1) · (Sym ◦ ∇) on S k , (5.2)
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where Sym is the symmetrizer given by

(Symϑ) (a1, . . . , ak) = 1

k!
∑
σ∈Sk

ϑ
(
aσ(1), . . . , aσ(k)

)
for all ϑ ∈ A∗⊗k .

By the symmetric coderivative ds∗ we mean the restriction of the coderivative operator
given in (2.14) to the space of symmetric tensors:

ds∗ = ∇∗∣∣
S k : S k −→ S k−1. (5.3)

Define two operators. The symmetric-trace

trs : �(A∗ ⊗ Sk A∗) −→ S k−1

as the restriction of the trace operator given in (2.13) to �(A∗ ⊗ Sk A∗) and the symmetric-
cotrace

cotrs : S k−1 −→ �(A∗ ⊗ Sk A∗)

given by

ib
(
cotrsη

) = (ibg) � η,

i.e. explicitly

(
cotrsη

)
(a0, . . . , ak) =

k∑
s=1

g (a0, as) · η (a1, . . . âs . . . , ak)

for η ∈ S k−1, b, a0, . . . ak ∈ � (A).

Lemma 5.1

μ�
g = k + 1

2
Sym ◦ cotrs on S k−1

and

ib ◦ cotrs = ib ◦ μ�
g − μ�

g ◦ ib for every b ∈ � (A) .

Proof Let η ∈ S k−1 and b, a0, . . . , ak ∈ � (A). Since
(
μ�

g η
)

(a0, . . . , ak) =∑
s<t g (as, at ) · η (a0, . . . âs . . . ât . . . , ak), we have

(k + 1) Sym
(
cotrsη

)
(a0, . . . , ak)

=
∑

s<t
g (as, at ) · η (a0, . . . âs . . . ât . . . , ak)

+
∑

t<s
g (as, at ) · η (a0, . . . ât . . . âs . . . , ak)

= 2
∑

s<t
g (as, at ) · η (a0, . . . âs . . . ât . . . , ak)

= 2
(
μ�

g η
)

(a0, . . . , ak) .

Moreover,

ia

(
μ�

g η
)

= ia (g � η) = (ia g) � η + g � (iaη) = ia
(
cotrsη

) + μ�
g (iaη) .

	


123



Ann Glob Anal Geom (2013) 44:319–337 333

Lemma 5.2 The operators cotrsη and k · trs are conjugate in the following sense cotrs =
k · (trs)∗ or more exactly:

〈
cotrs (η) , ζ

〉
g = 〈

ω, k · trsζ
〉
g (5.4)

for η ∈ S k−1, ζ ∈ �
(

A∗ ⊗ Sk A∗).

Proof Similar to the proof of (3.5) in Lemma 3.2. 	

Lemma 5.3

(a) trs (cotrsη) = (n + k − 1) η,

(b) trs
(
μ�

g η
)

= μ�
g (trsη) + (n + 2k − 2) η

for any η ∈ S k−1.

Proof The proof of (a) is similar to that in the skew-symmetric case (Lemma 3.3). Let
η ∈ S k−1, (e1, . . . , en) be an orthonormal local frame of A, i2, . . . , ik ∈ {1, . . . , n}. Then

trs
(
μ�

g η
) (

ei2 , . . . , eik

)

=
n∑

i1=1

g
(
ei1 , ei1

) · η
(
ei2 , . . . , eik

) +
n∑

i1=1

k∑
s=2

g
(
ei1 , eis

) · η
(
ei1 , ei2 , . . . êis . . . , eik

)

+
n∑

i1=1

∑
t<s

g
(
eit , eis

) · η
(
ei1 , ei1 , ei2 , . . . êit . . . êis . . . , eik

)

= n · η
(
ei2 , . . . , eik

) + 2
k∑

s=2

g
(
eis , eis

) · η
(
eis , ei2 , . . . êis . . . , eik

)

+
∑
t<s

g
(
eit , eis

) · (
trsη

) (
ei2 , . . . êit . . . êis . . . , eik

)

= (n + 2 (k − 1)) · η
(
ei2 , . . . , eik

) + μ�
g

(
trsη

) (
ei2 , . . . , eik

)
.

	

Define the operator

πtr = 1

n + k − 1
cotrs ◦ tr on �

(
A∗ ⊗ Sk

o A∗) .

Lemma 5.3(a) implies that πtr : �
(

A∗ ⊗ Sk
o A∗) → �

(
A∗ ⊗ Sk

o A∗) is a projection. More-
over, since tr ◦πtr = tr, then tr ◦ (id − πtr) = 0. Thus the operator id−πtr is also a projection
in �

(
A∗ ⊗ Sk

o A∗).
Now, define three linear mappings

π s
1 , π s

2 , π s
3 : �

(
A∗ ⊗ Sk

o A∗) −→ �
(

A∗ ⊗ Sk
o A∗)

by

π s
1 = Sym ◦ (id − πtr) , π s

2 = id − π s
1 − π s

3 , π s
3 = πtr.

Lemma 5.4
〈
π s

1ζ, π s
3η

〉
g = 〈

π s
1ζ, π s

2η
〉
g = 〈

π s
2ζ, π s

3η
〉
g = 0

for ζ, η ∈ �(A∗ ⊗ Sk
o A∗).
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Proof Let ζ, η ∈ �(A∗ ⊗ Sk
o A∗). Since π s

1ζ and π s
2ζ have zero traces, Lemma 5.2 implies

at once that
〈
π s

1ζ, π s
3η

〉
g = 0 and

〈
π s

2ζ, π s
3η

〉
g = 0. Hence

〈
π s

1ζ, π s
2η

〉
g = 〈

π s
1ζ, η

〉
g −〈

π s
1ζ, π s

1η
〉
g . The proof of

〈
π s

1ζ, η
〉
g = 〈

π s
1ζ, π s

1η
〉
g is similar to a proper part of that of

Lemma 3.4. 	

Theorem 5.1 π s

1 , π s
2 , π s

3 are projections and �
(

A∗ ⊗ Sk
o A∗) splits onto the direct (in fact,

orthogonal) sum of O(n)-invariant subspaces:

�
(

A∗ ⊗ Sk
o A∗) = Imπ s

1 ⊕ Imπ s
2 ⊕ Imπ s

3 . (5.5)

Proof The orthogonality of the splitting follows from Lemma 5.4. Since Sym and πtr, id−πtr

are projections and Sym ◦ πtr = πtr ◦ Sym, by Lemma 5.3(a) we obtain that π s
1 and π s

3 are
projections in �

(
A∗ ⊗ Sk

o A∗). Consequently, π s
2 ◦π s

2 = π s
2 + (

π s
1 ◦ π s

3 + π s
3 ◦ π s

1

)
. But we

see that

π s
1 ◦ π s

3 = Sym ◦ (πtr − πtr ◦ πtr) = 0.

Analogously π s
3 ◦ π s

1 = 0. Hence π s
2 is a projection.

The space Imπ s
3 is called the pure trace part of �

(
A∗ ⊗ Sk

o A∗) in the sense that
tri1,i2 (a∗ ⊗ η) = π s

3 for ii < i2. By Lemma 5.3 π s
1 , π s

2 , π s
3 can be explicitly expressed

in the following forms:

π s
1 = Sym − 2

(n + k − 1) (k + 1)
μ�

g ◦ trs,

π s
2 = id − Sym + 2

(n + k − 1) (k + 1)
μ�

g ◦ trs − 1

n + k − 1
cotrs ◦ trs,

π s
3 = 1

n + k − 1
cotrs ◦ trs.

Define the Stein-Weiss type operators

Ps
j = π s

j ◦ ∇ : S k
o −→ �

(
A∗ ⊗ Sk

o A∗) , j ∈ {1, 2, 3} .

Theorem 5.2

∇ = Ps
1 + Ps

2 + Ps
3 .

Moreover,

Ps
1 ζ = 1

k + 1

(
dsζ + 2

n + k − 1
g � ds∗ζ

)
,

Ps
2 ζ = ∇ζ − 1

k + 1
dsζ − 2

(n + k − 1) (k + 1)
g � ds∗ζ + 1

n + k − 1
cotrsds∗ζ,

Ps
3 ζ = −1

n + k − 1
cotrs ◦ ds∗ζ

for ζ ∈ S k
o .

Proof Simple consequence of (5.2), (5.3) and Theorem 5.1. 	

Remark 5.1 For n ≥ 5 the orthogonal subspaces in (5.5) are irreducible, so, Ps

1 , Ps
2 , Ps

3 are
gradients. If n = 4, Ps

2 splits further on two O(n)-gradients. For n = 3 the decomposition
into irreducible parts is given by the Clebsch-Gordan formula. The details of the splitting in
the two last cases can be found in [21].
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Notice that in the case k = 1 the splitting of ∇ reduces to that in (2.12) where Ps
1 =

P2, Ps
2 = P1, Ps

3 = P3.
Notice also that Ps

1 is a symmetric counterpart of the Cauchy-Ahlfors operator investigated
in [1,21,22,18,19]. Finally notice that similarly as in the skew-symmetric case only one Ps

1
is elliptic of the three considered gradients. Its symbol is equal to

σPs
1
(ω, ·) = 1

k + 1
μ�

ω + 1

n − k + 1
Sym ◦ cotrs ◦ tr ◦ μ⊗

ω ,

since in our case σds (ω, ·) = μ�
ω , σd∗a (ω, ·) = −tr◦μ⊗

ω , where μ⊗
ω is a tensor multiplication

by ω ∈ A∗
x . Moreover,

σPs
3
(ω, ·) = 1

n + k − 1
cotrs ◦ tr ◦ μ⊗

ω , σPs
2
(ω, ·) = μ⊗

ω − σPs
1
(ω, ·) − σPs

3
(ω, ·) .

One can check that if A is transitive, σPs
1
(ω, ·) is injective for all ω �= 0. The ellipticity of

Ps
1 follows also from the general theory of gradients (cf. [10,9,6]).

6 Weitzenböck-type formula for symmetric forms

Define the symmetric Ricci type operator Rs : S → S by

(
Rsζ

)
(a1, . . . , ak) =

n∑
j=1

k∑
s=1

(
R∇

e j ,as
ζ
) (

e j , a1, . . . âs . . . , ak
)
,

the operator T s : S → S by

(
T sζ

)
(a1, . . . , ak) =

n∑
j=1

(
∇T ∇(e j ,as)ζ

)
(a1, . . . âs . . . , ak) ,

and next, Ms : S → S by

(
Msζ

)
(a1, . . . , ak) =

n∑
j=1

k∑
s=1

(
i∇as e j ie j + ie j i∇as e j

)
(∇ζ ) (a1, . . . âs . . . , ak) ,

where ζ ∈ S k, a1, . . . , ak ∈ � (A) , (e1, . . . , en) is a local orthonormal frame of A, R∇ is
the curvature tensor of the connection ∇ : � (A) → CDO(Sk A∗). Then, by Lemma 2.2,

(
Rsζ

)
(a1, . . . , ak) =

n∑
j=1

k∑
s=1

(
∇2

e j ,as
ζ − ∇2

as ,e j
ζ
) (

e j , a1, . . . âs . . . , ak
)

+ (
T sζ

)
(a1, . . . , ak) .

(6.1)

Theorem 6.1

− (
ds∗dsη

)
(a1, . . . , ak) = tr∇2η (a1, . . . , ak) +

n∑
j=1

k∑
s=1

(
∇2

e j ,as
η
) (

e j , a1, . . . âs . . . , ak
)

for η ∈ S k, a1, . . . , ak ∈ � (A).
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Proof Let η ∈ S k, a1, . . . , ak ∈ � (A). One can see that

tr∇2η (a1, . . . , ak) =
n∑

j=1

∇e j

((∇e j η
)
(a1, . . . , ak)

)

−
n∑

j=1

k∑
s=1

(∇e j η
) (

a1, . . . ,∇e j as, . . . , ak
)

−
n∑

j=1

(
∇∇e j e j η

)
(a1, . . . , ak)

and (
∇2

e j ,as
η
) (

e j , a1, . . . âs . . . , ak
)

= ∇e j

((∇as η
) (

e j , a1, . . . âs . . . , ak
)) − (∇as η

) (∇e j e j , a1, . . . âs . . . , ak
)

−
∑
t �=s

(∇at η
) (

e j , a1, . . . ,∇e j as, . . . ât . . . , ak
) −

(
∇∇e j as η

) (
e j , a1, . . . âs . . . , ak

)
.

Now, using definitions of ds, ds∗, and collecting like terms one obtains the desired formula.
	


Theorem 6.2

(
dsds∗η

)
(a1, . . . , ak) = (

Msη
)
(a1, . . . , ak) −

k∑
s=1

n∑
j=1

(
∇2

as ,e j
η
) (

e j , a1, . . . âs . . . , ak
)

for η ∈ S k, a1, . . . , ak ∈ � (A).

Proof Let η ∈ S k, a1, . . . , ak ∈ � (A). Since
(
∇2

as ,e j
η
) (

e j , a1, . . . âs . . . , ak
) = ∇as

((∇e j η
) (

e j , a1, . . . âs . . . , ak
))

− (∇e j η
) (∇as e j , a1, . . . âs . . . , ak

)

−
∑

t �=s

(∇e j η
) (

e j , a1, . . . âs . . . ∇as at . . . , ak
)

− (∇∇as e j η
) (

e j , a1, . . . âs . . . , ak
)
,

by (5.1) and (5.3) the theorem follows. 	

Define the Laplace-type operator on symmetric tensors by

�s = ds∗ds − dsds∗.

One can check that if A is transitive, �s is a second order linear strongly elliptic operator
with the metric symbol, i.e. for any covector ω and any symmetric k-tensor η the symbol is
given by the formula σ�s (ω, η) = |ω|2 η.

As a consequence of theorems 6.1, 6.2, definitions of T s, Ms and (6.1) we obtain the
following formula on symmetric tensors.

Theorem 6.3 (Weitzenböck-type Formula) �s = ∇∗∇ − Rs + T s − Ms .

Notice that if ∇ is a metric A-connection, Ms = 0, and then �s − ∇∗∇ = −Rs + T s .
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