Show simple item record

dc.contributor.authorBalcerzak, Bogdan
dc.contributor.authorPierzchalski, Antoni
dc.date.accessioned2016-06-01T11:24:20Z
dc.date.available2016-06-01T11:24:20Z
dc.date.issued2013
dc.identifier.issn0232-704X
dc.identifier.urihttp://hdl.handle.net/11089/18230
dc.description.abstractGeneralized O(n) -gradients for connections on Lie algebroids are derived.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Netherlandspl_PL
dc.relation.ispartofseriesAnnals of Global Analysis and Geometry;3
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.subjectLie algebroidpl_PL
dc.subjectConnectionpl_PL
dc.subjectStein-Weiss gradientspl_PL
dc.subjectYoung diagramspl_PL
dc.subjectLaplace type operatorspl_PL
dc.subjectWeitzenböck formulaspl_PL
dc.titleGeneralized gradients on Lie algebroidspl_PL
dc.typeArticlepl_PL
dc.page.number319–337pl_PL
dc.contributor.authorAffiliationLodz University of Technology, Institute of Mathematicspl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Faculty of Mathematics and Computer Sciencepl_PL
dc.identifier.eissn1572-9060
dc.referencesAhlfors, L.V.: Invariant operators and integral representations in hyperbolic spaces. Math. Scand. 36, 27–43 (1975)pl_PL
dc.referencesBalcerzak, B., Kubarski, J., Walas, W.: Primary characteristic homomorphism of pairs of Lie algebroids and Mackenzie algebroid. Banach Center Publ. 54, 135–173 (2001)pl_PL
dc.referencesBalcerzak, B., Kalina, J., Pierzchalski, A.: Weitzenböck formula on Lie algebroids. Bull. Polish Acad. Sci. Math. 60, 165–176 (2012)pl_PL
dc.referencesBartoszek, A., Kalina, J., Pierzchalski, A.: Gradients for SL(q) -foliations. J. Geom. Phys. 61, 2410–2416 (2011)pl_PL
dc.referencesBranson, T., Gilkey, P.B., Ørsted, B., Pierzchalski, A.: Heat equation asymptotics of a generalized Ahlfors Laplacian on a manifold with boundary. In: Operator Theory: Advances and Applications, vol. 57, Birkhäuser Verlag, Basel, pp. 1–13 (1992)pl_PL
dc.referencesBranson, T.: Stein-Weiss operators and ellipticity. J. Funct. Anal. 151, 334–383 (1997)pl_PL
dc.referencesGrabowski, J., Urbański, P.: Lie algebroid and Poisson-Nijenhuis structure. Rep. Math. Phys. 40, 195–208 (1997)pl_PL
dc.referencesHiggins, P.J., Mackenzie, K.C.H.: Algebraic constructions in the category of Lie algebroids. J. Algebra 129, 194–230 (1990)pl_PL
dc.referencesKalina, J., Ørsted, B., Pierzchalski, A., Walczak, P., Zhang, F.: Elliptic gradients and highest weights. Bull. Acad. Polon. Sci. Ser. Math. 44(4), 511–519 (1996)pl_PL
dc.referencesKalina, J., Pierzchalski, A., Walczak, P.: Only one of generalized gradients can be elliptic. Ann. Polon. Math. 67(2), 111–120 (1997)pl_PL
dc.referencesKosmann-Schwarzbach, Y., Laurent-Gengoux, C., Weinstein, A.: Modular classes of Lie algebroid morphisms. Transform. Groups 13, 727–755 (2008)pl_PL
dc.referencesMackenzie, K.C.H.: General Theory of Lie Groupoids and Lie Algebroids. London Mathematical Society Lecture Note Series 213, Cambridge University Press, Cambridge (2005)pl_PL
dc.referencesMarle, C.-M.: Calculus on Lie algebroids, Lie groupoids and Poisson manifolds. Dissert. Math. 457, 1–57 (2008)pl_PL
dc.referencesMaxim-Raileanu, L.: Cohomology of Lie algebroids. An. Sti. Univ. “Al. I. Cuza” Iasi Sect. I a Mat. (N.S.) 22(2), 197–199 (1976)pl_PL
dc.referencesNarasimhan, R.: Analysis on Real and Complex Manifolds. North-Holland, 2nd edn. Springer- Verlag, New York (1985)pl_PL
dc.referencesØrsted, B., Pierzchalski, A.: The Ahlfors Laplacian on a Riemannian manifold. In: Constantin Caratheodory: an international tribute, 2, World Scientific, Teaneck, pp. 1021–1049 (1991)pl_PL
dc.referencesØrsted, B., Pierzchalski, A.: The Ahlfors Laplacian on a Riemannian manifold with boundary. Michigan Math. J. 43(1), 99–122 (1996)pl_PL
dc.referencesPierzchalski, A.: On quasiconformal deformations of manifolds and hypersurfaces. In: Proceedings of the Second Finnish-Polish Summer School in Complex Analysis, Jyväskylä, Bericht Univ. Jyvä skylä Math. Inst. 28, 79–94 (1984)pl_PL
dc.referencesPierzchalski, A.: Some differential operators connected with quasiconformal deformations on manifolds. In: Partial differential equations. Banach Center Publ. 19, 205–212 (1987)pl_PL
dc.referencesPierzchalski, A.: Ricci curvature and quasiconformal deformations of a Riemannian manifold. Manuscr. Math. 66, 113–127 (1989)pl_PL
dc.referencesReimann, H.M.: A rotation invariant differential equation for vector fields. Ann. Sc. Norm. Super. Pisa Cl. Sci. 9(4), 159–174 (1982)pl_PL
dc.referencesReimann, H.M.: Invariant system of differential operators. In: Proceeding of a seminar held in Torino May-June 1982, Topics in modern harmonic analysis, Instituto di alta Matematica, Roma (1983)pl_PL
dc.referencesStein, E., Weiss, G.: Generalization of the Cauchy-Riemann equations and representations of the rotation group. Amer. J. Math. 90, 163–196 (1968)pl_PL
dc.referencesWeyl, H.: The Classical Groups. Princeton University Press, Princeton (1945)pl_PL
dc.contributor.authorEmailantoni@math.uni.lodz.plpl_PL
dc.identifier.doi10.1007/s10455-013-9368-y
dc.date.defence2013
dc.relation.volume44pl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa 3.0 Polska