dc.contributor.author | Balcerzak, Bogdan | |
dc.contributor.author | Pierzchalski, Antoni | |
dc.date.accessioned | 2016-06-01T11:24:20Z | |
dc.date.available | 2016-06-01T11:24:20Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0232-704X | |
dc.identifier.uri | http://hdl.handle.net/11089/18230 | |
dc.description.abstract | Generalized O(n) -gradients for connections on Lie algebroids are derived. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Netherlands | pl_PL |
dc.relation.ispartofseries | Annals of Global Analysis and Geometry;3 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.subject | Lie algebroid | pl_PL |
dc.subject | Connection | pl_PL |
dc.subject | Stein-Weiss gradients | pl_PL |
dc.subject | Young diagrams | pl_PL |
dc.subject | Laplace type operators | pl_PL |
dc.subject | Weitzenböck formulas | pl_PL |
dc.title | Generalized gradients on Lie algebroids | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 319–337 | pl_PL |
dc.contributor.authorAffiliation | Lodz University of Technology, Institute of Mathematics | pl_PL |
dc.contributor.authorAffiliation | University of Lodz, Faculty of Mathematics and Computer Science | pl_PL |
dc.identifier.eissn | 1572-9060 | |
dc.references | Ahlfors, L.V.: Invariant operators and integral representations in hyperbolic spaces. Math. Scand. 36, 27–43 (1975) | pl_PL |
dc.references | Balcerzak, B., Kubarski, J., Walas, W.: Primary characteristic homomorphism of pairs of Lie algebroids and Mackenzie algebroid. Banach Center Publ. 54, 135–173 (2001) | pl_PL |
dc.references | Balcerzak, B., Kalina, J., Pierzchalski, A.: Weitzenböck formula on Lie algebroids. Bull. Polish Acad. Sci. Math. 60, 165–176 (2012) | pl_PL |
dc.references | Bartoszek, A., Kalina, J., Pierzchalski, A.: Gradients for SL(q) -foliations. J. Geom. Phys. 61, 2410–2416 (2011) | pl_PL |
dc.references | Branson, T., Gilkey, P.B., Ørsted, B., Pierzchalski, A.: Heat equation asymptotics of a generalized Ahlfors Laplacian on a manifold with boundary. In: Operator Theory: Advances and Applications, vol. 57, Birkhäuser Verlag, Basel, pp. 1–13 (1992) | pl_PL |
dc.references | Branson, T.: Stein-Weiss operators and ellipticity. J. Funct. Anal. 151, 334–383 (1997) | pl_PL |
dc.references | Grabowski, J., Urbański, P.: Lie algebroid and Poisson-Nijenhuis structure. Rep. Math. Phys. 40, 195–208 (1997) | pl_PL |
dc.references | Higgins, P.J., Mackenzie, K.C.H.: Algebraic constructions in the category of Lie algebroids. J. Algebra 129, 194–230 (1990) | pl_PL |
dc.references | Kalina, J., Ørsted, B., Pierzchalski, A., Walczak, P., Zhang, F.: Elliptic gradients and highest weights. Bull. Acad. Polon. Sci. Ser. Math. 44(4), 511–519 (1996) | pl_PL |
dc.references | Kalina, J., Pierzchalski, A., Walczak, P.: Only one of generalized gradients can be elliptic. Ann. Polon. Math. 67(2), 111–120 (1997) | pl_PL |
dc.references | Kosmann-Schwarzbach, Y., Laurent-Gengoux, C., Weinstein, A.: Modular classes of Lie algebroid morphisms. Transform. Groups 13, 727–755 (2008) | pl_PL |
dc.references | Mackenzie, K.C.H.: General Theory of Lie Groupoids and Lie Algebroids. London Mathematical Society Lecture Note Series 213, Cambridge University Press, Cambridge (2005) | pl_PL |
dc.references | Marle, C.-M.: Calculus on Lie algebroids, Lie groupoids and Poisson manifolds. Dissert. Math. 457, 1–57 (2008) | pl_PL |
dc.references | Maxim-Raileanu, L.: Cohomology of Lie algebroids. An. Sti. Univ. “Al. I. Cuza” Iasi Sect. I a Mat. (N.S.) 22(2), 197–199 (1976) | pl_PL |
dc.references | Narasimhan, R.: Analysis on Real and Complex Manifolds. North-Holland, 2nd edn. Springer- Verlag, New York (1985) | pl_PL |
dc.references | Ørsted, B., Pierzchalski, A.: The Ahlfors Laplacian on a Riemannian manifold. In: Constantin Caratheodory: an international tribute, 2, World Scientific, Teaneck, pp. 1021–1049 (1991) | pl_PL |
dc.references | Ørsted, B., Pierzchalski, A.: The Ahlfors Laplacian on a Riemannian manifold with boundary. Michigan Math. J. 43(1), 99–122 (1996) | pl_PL |
dc.references | Pierzchalski, A.: On quasiconformal deformations of manifolds and hypersurfaces. In: Proceedings of the Second Finnish-Polish Summer School in Complex Analysis, Jyväskylä, Bericht Univ. Jyvä skylä Math. Inst. 28, 79–94 (1984) | pl_PL |
dc.references | Pierzchalski, A.: Some differential operators connected with quasiconformal deformations on manifolds. In: Partial differential equations. Banach Center Publ. 19, 205–212 (1987) | pl_PL |
dc.references | Pierzchalski, A.: Ricci curvature and quasiconformal deformations of a Riemannian manifold. Manuscr. Math. 66, 113–127 (1989) | pl_PL |
dc.references | Reimann, H.M.: A rotation invariant differential equation for vector fields. Ann. Sc. Norm. Super. Pisa Cl. Sci. 9(4), 159–174 (1982) | pl_PL |
dc.references | Reimann, H.M.: Invariant system of differential operators. In: Proceeding of a seminar held in Torino May-June 1982, Topics in modern harmonic analysis, Instituto di alta Matematica, Roma (1983) | pl_PL |
dc.references | Stein, E., Weiss, G.: Generalization of the Cauchy-Riemann equations and representations of the rotation group. Amer. J. Math. 90, 163–196 (1968) | pl_PL |
dc.references | Weyl, H.: The Classical Groups. Princeton University Press, Princeton (1945) | pl_PL |
dc.contributor.authorEmail | antoni@math.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.1007/s10455-013-9368-y | |
dc.date.defence | 2013 | |
dc.relation.volume | 44 | pl_PL |