Pokaż uproszczony rekord

dc.contributor.authorGórajski, Mariusz
dc.date.accessioned2016-02-06T13:52:06Z
dc.date.available2016-02-06T13:52:06Z
dc.date.issued2016-01
dc.identifier.urihttp://hdl.handle.net/11089/16882
dc.description.abstractEstimates of the generalised Taylor rule suggest that monetary policy in Poland can be characterized as having reacted in a moderate fashion to output and in ation gaps and are strongly dependent on the lagged interest rate. Moreover, as for the majority of central banks the short-term rate paths are smooth and only gradual changes can be observed. Optimal monetary policy models in the linear-quadratic framework produce high variability of interest rates, and are hence inconsistent with the data. One can obtain gradual behaviour of optimal monetary policy by adding an interest rate smoothing term to the central bank objective. This heuristic procedure has not much substantiation in the central bank's targets and raises the question: What are the rational reasons for the gradual movements in the monetary policy instrument? In this paper we determine optimal monetary polices in a VAR model of the Polish economy with parameter uncertainty. By incorporating a proper structure of multiplicative uncertainty in the linear-quadratic model of the Polish economy we nd a data consistent robust monetary policy rule. Thus proving that parameter uncertainty can be the rationale for "timid" movements in the short-interest rate dynamics. Finally, we show that there is trade o between parameter uncertainty and the interest rate smoothing incentive.pl_PL
dc.publisherFaculty of Economics and Sociology of the University of Lodzpl_PL
dc.relation.ispartofseriesLodz Economics Working Papers;1/2016
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.subjectOptimal Monetary Policypl_PL
dc.subjectParameter Uncertaintypl_PL
dc.subjectthe Brainard conservatism principlepl_PL
dc.subjectInterest rate smoothingpl_PL
dc.subjectSVAR modelpl_PL
dc.titleRobust Monetary Policy In A Linear Model Of The Polish Economy: Is The Uncertainty In The Model Responsible For The Interest Rate Smoothing Effect?pl_PL
dc.contributor.authorAffiliationFaculty of Economics and Sociology, University of Lodzpl_PL
dc.referencesAmman, H. M. and Kendrick, D. A. (2003). Mitigation of the Lucas critique with stochastic control methods. Journal of Economic Dynamics and Control, 27(11):2035-2057.pl_PL
dc.referencesBaranowski, P., Górajski, M., Malaczewski, M., and Szafrański, G. (2013). Inflation in Poland under state-dependent pricing. Technical report, Aboa Centre for Economics.pl_PL
dc.referencesBarlevy, G. (2011). Robustness and macroeconomic policy. Annu. Rev. Econ., 3(1):1-24.pl_PL
dc.referencesBatini, N. and Haldane, A. (1999). Forward-looking rules for monetary policy. In Monetary policy rules, pages 157-202. University of Chicago Press.pl_PL
dc.referencesBernanke, B. S. and Blinder, A. S. (1992). The federal funds rate and the channels of monetary transmission. The American Economic Review, pages 901-921pl_PL
dc.referencesBlinder, A. S. (1999). Central banking in theory and practice. Mit press.pl_PL
dc.referencesBogusz, D., Górajski, M., and Ulrichs, M. (2015a). Optymalne strategie polityki pieniężnej dla Polski uwzględniające wrażliwość banku na ryzyko nieosiągnięcia założonego celu. Materiały i Studia NBP, 317.pl_PL
dc.referencesBogusz, D., Górajski, M., and Ulrichs, M. (2015b). Strict vs flexible inflation targeting in the optimal monetary policy model for Poland. Przegląd Statystyczny, 62(4):379-396.pl_PL
dc.referencesBrainard, W. C. (1967). Uncertainty and the effectiveness of policy. The American Economic Review Vol. 57, No. 2, pages 411-425.pl_PL
dc.referencesChow, G. C. et al. (1975). Analysis and control of dynamic economic systems. Wiley.pl_PL
dc.referencesDeGroot, M., Bracha, C., and Czakański, M. (1981). Optymalne decyzje statystyczne. Państwowe Wydawnictwo Naukowe.pl_PL
dc.referencesEasley, D. and Kiefer, N. M. (1988). Controlling a stochastic process with unknown parameters. Econometrica: Journal of the Econometric Society, pages 1045-1064.pl_PL
dc.referencesEstrella, A. and Mishkin, F. S. (1999). Rethinking the role of nairu in monetary policy: implications of model formulation and uncertainty. In Monetary Policy Rules, pages 405-436. University of Chicago Press.pl_PL
dc.referencesGali, J. (2009). Monetary Policy, Inflation, and the Business Cycle: An Introduction to the New Keynesian Framework. Princeton University Press.pl_PL
dc.referencesGiannoni, M. P. (2002). Does model uncertainty justify caution? robust optimal monetary policy in a forward-looking model. Macroeconomic Dynamics, 6(01):111-144.pl_PL
dc.referencesGiannoni, M. P. (2007). Robust optimal monetary policy in a forward-looking model with parameter and shock uncertainty. Journal of Applied Econometrics, 22(1):179-213.pl_PL
dc.referencesGoodfriend, M. (1987). Interest rate smoothing and price level trend-stationarity. Journal of Monetary Economics, 19(3):335-348.pl_PL
dc.referencesGoodhart, C. (1999). Central bankers and uncertainty. In PROCEEDINGS-BRITISH ACADEMY, volume 101, pages 229-272. OXFORD UNIVERSITY PRESS INC.pl_PL
dc.referencesGreenspan, A. (2004). Risk and uncertainty in monetary policy. American Economic Review, pages 33-40.pl_PL
dc.referencesHansen, L. P. and Sargent, T. J. (2008). Robustness. Princeton University Press.pl_PL
dc.referencesJudge, G. G., Hill, R., Griths, W., Lutkepohl, H., and Lee, T.-C. (1988). Introduction to the Theory and Practice of Econometrics.pl_PL
dc.referencesKendrick, D. A. (2005). Stochastic control for economic models: past, present and the paths ahead. Journal of Economic Dynamics and Control, 29(1):3-30.pl_PL
dc.referencesKiefer, N. M. and Nyarko, Y. (1989). Optimal control of an unknown linear process with learning. International Economic Review, pages 571-586.pl_PL
dc.referencesLucas Jr, R. E. (1976). Econometric policy evaluation: A critique. In Carnegie-Rochester conference series on public policy, volume 1, pages 19-46. Elsevier.pl_PL
dc.referencesLutkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Springer.pl_PL
dc.referencesMilo, W., Bogusz, D., Górajski, M., and Ulrichs, M. (2013). Notes on some optimal monetary policy rules: the case of Poland. Acta Universitatis Lodziensis. Folia Oeconomica, Financial Markets and Macroprudential Policy, 295:59-77.pl_PL
dc.referencesOnatski, A. and Stock, J. H. (2002). Robust monetary policy under model uncertainty in a small model of the us economy. Macroeconomic Dynamics, 6(01):85-110.pl_PL
dc.referencesOnatski, A. and Williams, N. (2003). Modeling model uncertainty. Journal of the European Economic Association, 1(5):1087-1122.pl_PL
dc.referencesPeersman, G. and Smets, F. (1999). The Taylor rule: a useful monetary policy benchmark for the euro area? International Finance, 2(1):85-116.pl_PL
dc.referencesPolito, V. and Wickens, M. (2012). Optimal monetary policy using an unrestricted VAR. Journal of Applied Econometrics, 27(4):525-553.pl_PL
dc.referencesPoole, W. (1998). A policymaker confronts uncertainty. Federal Reserve Bank of St. Louis Review, 80(September/October 1998).pl_PL
dc.referencesPrescott, E. C. (1972). The multi-period control problem under uncertainty. Econometrica: Journal of the Econometric Society, pages 1043-1058.pl_PL
dc.referencesRudebusch, G. D. (2001). Is the fed too timid? Monetary policy in an uncertain world. Review of Economics and Statistics, 83(2):203-217.pl_PL
dc.referencesSack, B. (2000). Does the fed act gradually? A VAR analysis. Journal of Monetary Economics, 46(1):229-256.pl_PL
dc.referencesSalmon, C. and Martin, B. (1999). Should uncertain monetary policymakers do less. Monetary Policy Under Uncertainty. Reserve Bank of New Zealand.pl_PL
dc.referencesSimon, H. A. (1956). Dynamic programming under uncertainty with a quadratic criterion function. Econometrica, Journal of the Econometric Society, pages 74-81.pl_PL
dc.referencesSims, C. A. (1986). Are forecasting models usable for policy analysis? Federal Reserve Bank of Minneapolis Quarterly Review, 10(1):2-16.pl_PL
dc.referencesSmets, F. (2002). Output gap uncertainty: does it matter for the taylor rule? Empirical Economics, 27(1):113-129.pl_PL
dc.referencesSoderstrom, U. (1999). Should central banks be more aggressive? Technical report, Sveriges Riksbank Working Paper Series.pl_PL
dc.referencesSoderstrom, U. (2002). Monetary policy with uncertain parameters. The Scandinavian Journal of Economics, 104(1):125-145.pl_PL
dc.referencesSvensson, L. E. (1999). Inflation targeting: some extensions. The Scandinavian Journal of Economics, 101(3):337-361.pl_PL
dc.referencesTheil, H. (1957). A note on certainty equivalence in dynamic planning. Econometrica: Journal of the Econometric Society, pages 346-349.pl_PL
dc.referencesTheil, H. (1961). Economic forecast and policy, vol. xv of contributions to economic analysis.pl_PL
dc.referencesTinbergen, J. (1952). On the theory of economic policy.pl_PL
dc.referencesWhittle, P. (1996). Optimal control: basics and beyond. John Wiley & Sons, Inc.pl_PL
dc.referencesWieland, V. (2000). Monetary policy, parameter uncertainty and optimal learning. Journal of Monetary Economics, 46(1):199-228.pl_PL
dc.referencesWoodford, M. (2003a). Interest and prices. Princeton University.pl_PL
dc.referencesWoodford, M. (2003b). Optimal interest-rate smoothing. The Review of Economic Studies, 70(4):861-886.pl_PL
dc.referencesWoodford, M. and Walsh, C. E. (2005). Interest and prices: Foundations of a theory of monetary policy.pl_PL
dc.referencesZabczyk, J. (1996). Chance and decision. Stochastic Control in Discrete Time, Quaderni, Scuola Normale Superiore, Pisa.pl_PL
dc.referencesZellner, A. (1996). An introduction to Bayesian inference in econometrics.pl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska