dc.contributor.author Gerstenkorn, Tadeusz dc.date.accessioned 2015-12-09T09:16:06Z dc.date.available 2015-12-09T09:16:06Z dc.date.issued 2015 dc.identifier.issn 0208-6018 dc.identifier.uri http://hdl.handle.net/11089/15312 dc.description.abstract The probability distribution of a random variable can be characterized by some numbers called parameters of the distribution. Moments belong to the most frequently used parameters. We focus on the Pólya distribution because we can easily obtain from it, as special cases, some distributions important in statistics such as: binomial, negative binomial and Poisson (the last one in the limit procedure). In 1972 G. Mühlbach gave very interesting formulae for the moments of the Pólya distribution. The author did not investigate the evaluation of the numerical efficacy of the formula for the moments. We will show that it is possible to demonstrate this formula in a simpler form, which is important from practical point of view. pl_PL dc.language.iso en pl_PL dc.publisher Wydawnictwo Uniwersytetu Łódzkiego pl_PL dc.relation.ispartofseries Acta Universitatis Lodziensis. Folia Oeconomica;314 dc.subject moments of the probability distribution pl_PL dc.subject Pólya probability distribution pl_PL dc.title Remarks on the Formula for the Moments of the Pólya Probability Distribution pl_PL dc.title.alternative Uwagi o wzorze na momenty rozkładu prawdopodobieństwa G. Pólyi pl_PL dc.type Article pl_PL dc.rights.holder © Copyright by Uniwersytet Łódzki, Łódź 2015 pl_PL dc.page.number [9]-14 pl_PL dc.contributor.authorAffiliation University of Łódź pl_PL dc.identifier.eissn 2353-7663 dc.references Gerstenkorn T., Śródka T. (1972), Kombinatoryka i rachunek prawdopodobieństwa, PWN, Warszawa. pl_PL dc.references Kaufmann A. (1968), Introduction à la Combinatorique en Vue des Applications, Paris, Dunod. pl_PL dc.references Łukasiewicz J., Warmus M. (1956), Metody numeryczne i graficzne, Część I, Warszawa, PWN. pl_PL dc.references Mühlbach G. (1972), Rekursionsformeln für die zentralen Momente der Pólya- und der Beta- Verteilung, Metrika 19, Fasc. 2–3, 171–177. pl_PL dc.contributor.authorEmail e-mail: tadger@math.uni.lodz.pl pl_PL dc.identifier.doi 10.18778/0208-6018.314.02 dc.relation.volume 3 pl_PL
﻿