dc.contributor.author | Gapińska, Magdalena | |
dc.contributor.author | Glińska, Sława | |
dc.date.accessioned | 2015-11-17T12:18:45Z | |
dc.date.available | 2015-11-17T12:18:45Z | |
dc.date.issued | 2014-01-01 | |
dc.identifier.issn | 1332-9049 | |
dc.identifier.uri | http://hdl.handle.net/11089/13886 | |
dc.description.abstract | Five-week-old tomato plants (Lycopersicon esculentum) cv. Perkoz grown in pots
containing garden soil in a growth chamber were submitted to 50 or 150 mM NaCl for
1 h, 2 and 5 days. Tomato leaf anatomy generally did not change after short time
salinity, except 5-day-treatment with 150 mM NaCl, where changed cell shape
(shrunk and deformed) simultaneously with increased volume of intercellular spaces
(IS) were observed. Although leaf hydration (H) depleted only 1 h after 150 mM NaCl
treatment both salt concentrations generated two coexisting populations of saltaffected
mesophyll cells: (i) slightly-affected (Sl-A) which showed incipient
plasmolysis or slightly changed shapes, and (ii) severely-affected (Sv-A) which
showed severe plasmolysis; serious deformation of cell shape or disorganization
including cell degeneration. In Sl-A cells salinity changed location and shape of
chloroplasts which were: more rounded, with oversized starch grains (SG) (2d) or
more flat (5d). Salt-mediated changes were becoming more distinguished and
pronounced with length of 150 mM NaCl treatment. The amount of salt-affected cells
was changing during the experiment and depended on the salt concentration. In 50
mM-treated plants salt-affected cells appeared 1 h after treatment (~40%) and raised
up to 78% on 2nd day, however the population of Sl-A cells dominated. In 150 mM
NaCl-treated plants the percentage of affected cells raised during the experiment
from 75% to 99%. Firstly Sl-A cells dominated, but on the 5th day the majority was
Sv-A. Salt-affected cells were distributed quite evenly in palisade or spongy
mesophyll, except 2 d after treatment with 50 mM NaCl, when their number was
higher in the palisade mesophyll. Sv-A cells in the spongy mesophyll were located
mostly near the bundle while in the palisade mesophyll more irregularly. Different
susceptibility of cells to salt stress might be the consequence of an unequal
distribution of osmotic stress and subsequent ionic stress or physiological state of
cells. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Faculty of Agriculture, University of Zagreb | pl_PL |
dc.relation.ispartofseries | Journal of Central European Agriculture;2014 | |
dc.subject | leaf hydration | pl_PL |
dc.subject | mesophyll cells | pl_PL |
dc.subject | osmotic stress | pl_PL |
dc.subject | plasmolysis | pl_PL |
dc.subject | salt stress | pl_PL |
dc.subject | tomato | pl_PL |
dc.title | Salt-mediated changes in leaf mesophyll cells of Lycopersicon esculentum Mill. plants | pl_PL |
dc.title.alternative | Zmiany w komórkach mezofilu liści roślin Lycopersicon esculentum Mill. spowodowane zasoleniem | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 219-235 | pl_PL |
dc.contributor.authorAffiliation | Gapińska, Magdalena, Laboratory of Electron Microscopy, Faculty of Biology and Environmental Protection, University of Lodz | pl_PL |
dc.contributor.authorAffiliation | Glińska, Sława, Laboratory of Electron Microscopy, Faculty of Biology and Environmental Protection, University of Lodz | pl_PL |
dc.references | Bennici, A., Tani, C., (2009) Ultrastructural effects of salinity in Nicotiana bigelovi var. bigelovi callus cells and Allium cepa roots. Caryologia: International Journal of Cytology, Cytosystematics and Cytogentics, 62(2), 124-133. | pl_PL |
dc.references | Bennici, A., Tani, C., (2012) Ultrastructural characteristic of callus cells of Nicotiana tabacum L. var. BELW3 grown in presence of NaCl. Caryologia: International Journal of Cytology, Cytosystematics and Cytogentics, 65(1), 72-81. DOI: 10.1080/00087114.2012.678091 | pl_PL |
dc.references | Boughalleb, F., Denden, M., Tiba, B.B., (2009) Anatomical changes induced by increasing NaCl salinity in three fodder shrubs Nitraria retusa, Atriplex halimus and Medicago arborea. Acta Physiologiae Plantarum, 31(5), 947- 960. DOI: 10.1007/s11738-009-0310-7 | pl_PL |
dc.references | Boughalleb, F., Haylaoui, H., Denden, M., (2012) Effect of salt stress on growth, water relations, solute composition and photosynthetic capacity of the xerohallophyte Nitraria retusa (L.) Environment Research Journal, 6(1), 1-13. DOI: 10.3923/erj.2012.1.13 | pl_PL |
dc.references | Bruns, S., Hecht-Buchholz, C., (1990) Light and electron microscope studies on the leaves of several potato cultivars after application of salt at various | pl_PL |
dc.references | Carpita, N., Sabularse, D., Montezinos, D., Delmer, D.P., (1979) Determination of the pore size of cell walls of living plant cells. Science, 205(4411), 1144-1147. | pl_PL |
dc.references | Carter, J.M. and Nippert J.B., (2011) Physiological response of Tamarix ramosissima to extreme NaCl concentrations. American Journal of Plant Science, 2(6), 808-815. DOI: 10.4236/ajps.2011.26095 | pl_PL |
dc.references | Chaparzadeh, N., D`Amico, M.L., Khavari-Nejad, R.A., Izzo, R., Navari-Izzo, F., (2004) Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiology and Biochemistry, 42(9), 695-701. DOI:10.1016/j.plaphy.2004.07.001 | pl_PL |
dc.references | Debouba, M., Gouida, H., Suzuki, A., Ghorbel, M.H., (2006) NaCl stress effects on enzymes involved in nitrogen assimilation pathway tomato “Lycopersicon esculentum” seedlings. Journal of Plant Physiology, 163 (12), 1247-1258. DOI: 10.1016/j.jplph.2005.09.012 | pl_PL |
dc.references | De Felipe, M.R., Sanchez Conde, M.P., (1984) Mineral composition and ultrastructure of leaves of tomato plants (Lycopersicon esculentum Mill.) subjected to different osmotic pressures and calcium levels. Anales de Edafologia y Agrobiologia, 43(1-2), 269-282. | pl_PL |
dc.references | De Lacerda, C. F., Asis Junior, J.O., Lemos Filho, L.C.A., de Oliveira, T.S., Guimeras, F.V.A., Gomes-Filho, E., Prisco, J.T., Bezzerra, M.A., (2006) Morpho-physiological responses of cowpea leaves to salt stress. Brazilian Journal of Plant Physiology, 18(4), 455-465. DOI: 10.1590/S1677- 04202006000400003 | pl_PL |
dc.references | Elavoumoottil, O.C., Martin, J.P., Moreno, M.L., (2003) Changes in sugars, sucrose synthase activity and protein in salinity tolerant callus and cell suspension culture of Brassica oleracea L. Biologia Plantarum, 46(1), 7-12. DOI:10.1023/A:1022389428782 | pl_PL |
dc.references | FAO (2008): Land and Plant Nutrition Management Service. Available at: http://www.fao.org/ag/agl/agll/spush. | pl_PL |
dc.references | Fernandez, F.M., Arrabaca, M.C., Carvalho, L.M.M., (2004) Sucrose metabolism in Lupinus albus L. under salt stress. Biologia Plantarum, 48(2), 317-319. DOI: 1023/B:BIOP.0000033465.59361.d2 | pl_PL |
dc.references | Fricke, W., Hinde, P.S., Leigh, R.A., Tomos, A.D., (1995) Vacuolar solutes in the upper epidermis of barley leaves. Intercellular differences follow patterns. Planta, 196, 40-49. DOI: 1007/BF00193215 | pl_PL |
dc.references | Gapińska, M., Skłodowska, M., Gabara, B., (2007) The morphological, biophysical and biochemical changes in the salinity-stressed tomato plant roots. In: 7th International Conference Ecophysiological Aspects of Plant Responces to Stress Factors. Kraków, Poland, September 19-22. Acta Physiolgiae Plantarum, 29 (Supl. 1), 58. DOI:10.1007/s11738-007-0082-x | pl_PL |
dc.references | Giełwanowska, I., Szczuka, E., Bednara, J., Górecki, R., (2005) Anatomical feature and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats. Annals of Botany, 96(6), 1109-1119. DOI: 10.1093/aob/mci262 | pl_PL |
dc.references | Ginbot, Z.G., Farrant, J.M., (2011) Physiological response of selected eragrostis species to water-deficit stress. African Journal of Biotechnology, 10(51): 10405-10417. DOI: 10.5897/AJB11.1124 | pl_PL |
dc.references | Glińska, S., Gapińska, M., (2013) The effect of pre-incubation of Allium cepa L. roots in the ATH-rich extract on Pb uptake and localization. Protoplasma, 250(2), 601-611. DOI: 10.1007/s00709-012-0445-z | pl_PL |
dc.references | Gupta, S.D., (2007) Plasma membrane ultrastucture in embryogenic culture of orchardgrass during NaCl stress. Biologia Plantarum, 51(4), 759-763. DOI: 10.1007/s10535-007-0155-0 | pl_PL |
dc.references | Hernandez, J.A., Almansa, M.S., (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologiae Plantarum, 115(2), 251-257. DOI:10.1034/j.1399-3054.2002.1150211.x | pl_PL |
dc.references | Hernandez, J.A., Ferrer, M.A., Jimenez, A., Ros-Barcelo, A., Sevilla, F., (2001) Antioxidant systems and O2 -·/H2O2 production in the apoplast of Pisum sativum L. leaves: its relation with NaCl-induced necrotic lesions in minor veins. Plant Physiology, 127(3), 817-831. DOI: 10.1104/pp.010188 | pl_PL |
dc.references | Ivitis, E., Cherlet, M., Tóth, T., Lewińska, K.E., Tóth, G., (2013) Characterisation of productivity limitation of salt-affected lands in different climatic regions of Europe using remote sensing derived productivity indicators. Land Degradation and Development, 24(5), 438-452. DOI: 10.1002/ldr.1140 | pl_PL |
dc.references | James, R.A., Munns, R., Caemmerer, S., Trejo, C., Miller, C., Condon, T., (2006) Photosynthetic capacity is related to the cellular and subcellular portioning of Na+, K+ and Cl- in salt-affected barley and durum wheat. Plant Cell and Environmental, 29(12), 2185-2197. DOI: 10.1111/j.1365-3040.2006.01592.x | pl_PL |
dc.references | Khavari-Nejad, R.A. and Mostofi Y., (1998) Effects of NaCl and CaCl2 on photosynthetic pigments, saccharides and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica, 35(1), 151-154. DOI: 10.1023/A:1006846504261 | pl_PL |
dc.references | Kholova, J., Sairam, R.K., Meena, R.C., (2010) Osmolytes and metal ions accumulation, oxidative stress and antioxidant enzymes activity as determinants of salinity stress tolerance in maize genotypes. Acta Physiolgiae Plantarum, 32(2), 477-486. DOI: 10.1007/s11738-009-0424-y | pl_PL |
dc.references | Mäkelä, P., Kärakkäinen, J., Somersalo, S., (2000) Effect of glycinebetaine on the chloroplast ultrastructure, chlorophyll and protein content and RuBPCO activities in tomato grown under drought or salinity. Biologia Plantarum, 43(3), 471-475. DOI: 10.1023/A:1026712426180 | pl_PL |
dc.references | Meloni, D.A., Oliva, M.A., Ruiz, H.A., Martines, C.A., (2001) Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Journal of Plant Nutrition, 24(3), 599-612. DOI: 10.1081/PLN-100104983 | pl_PL |
dc.references | Mitsuya, S., Kawasaki, M., Taniguchi, M., Miyake, H., (2003) Relationship between salinity-induced damages and aging in rice leaf tissues. Plant Production Science, 6(3), 213-218. DOI: 10.1626/pps.6.213 | pl_PL |
dc.references | Mitsuya, S., Yano, K., Kawasaki, M., Taniguchi, M., Miyake, H., (2002) Relationship between the distribution of Na and the damages caused by salinity in the leaves of rice seedlings grown under saline condition. Plant Production Science, 5(4), 269-274. | pl_PL |
dc.references | Morales, M.A., Sanchez-Blanco, M.J., Olmos, E., Toreccilla, A., Alarcon, J.J., (1998) Changes in the growth, leaf water relations and cell ultrastructure in Argyranthemum coronopifolium plants under saline conditions. Journal of Plant Physiology, 153(1-2), 174-180. DOI: 10.1016/S0176-1617(98)80062- X | pl_PL |
dc.references | Munné-Bosch, S., Alegre, L., (2002) Plant aging increases oxidative stress in chloroplasts. Planta, 214(4), 608-615.DOI: 10.1007/s004250100646 | pl_PL |
dc.references | Munns, R., (2002) Comparative physiology of salt and water stress. Plant Cell and Environment, 25(2), 239-250. DOI: 10.1046/j.0016-8025.2001.00808.x | pl_PL |
dc.references | Nandwal, A.S, Kukreja, S., Kumar, N., Sharma, P.K., Jain, M., Mann, A., Singh, S., (2007) Plant water status, ethylene evolution, N2-fixing efficiency, antioxidant activity and lipid peroxidation in Cicer arietinum L. nodules as affected by short-term salinization and desalinization. Journal of Plant Physiology, 164(9), 1161-1169. DOI: 10.1016/j.jplph.2006.05.017 | pl_PL |
dc.references | Navarro, A., Bañon, S., Olmos, E., Sánchez-Blanco, M.J., (2007) Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. Plant Science, 172(3), 473-480. DOI: 10.1016/j.plantsci.2006.10.006 | pl_PL |
dc.references | Panagos, P., Van Liedekerke, M., Jones, A., Montanarella L., (2012) European Soil Data Centre: Response to European policy support and public data requirements. Land Use Policy, 29(2), 329-338. DOI: 10.1016/jlandusepol.2011.07.003 | pl_PL |
dc.references | Pareek, A., Singla, S.L., Grover, A., (1997) Short-term salinity and high temperature stress-associated ultrastructural alterations in young leaf cells of Oryza sativa L. Annals of Botany, 80 (5), 629-639. DOI: 10.1006/anbo.1997.0494 | pl_PL |
dc.references | Parida, A,K., Das, A.B., Mitra, B., (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees, 18, 167-174. DOI:10.1007/s00468-003-0293-8 | pl_PL |
dc.references | Rahman, S., Matsumuro, T., Miyake, H., Takeoka, Y., (2000) Salinity-induced ultrastructural alterations in leaf cells of rice (Oryza sativa L.). Plant Production Science, 3(4), 422-429. | pl_PL |
dc.references | Rajashaker, C.B., Lafta, A., (1996) Cell-wall changes and cell tension in response to cold acclimation and exogenous abscisic acid in leaves and cell cultures. Plant Physiology, 111, 605-612. DOI: 10.1104/pp.111.2.605 | pl_PL |
dc.references | Radić, S., Stefanić, P.P., Lepedus, H., Roje, V., Pevalek-Kozlina, B., (2013) Salt tolerance of Centarea ragusina L. associated with efficient osmotic adjustment and increased antioxidative capacity. Environmental and Experimental Botany, 87(, 39-48. DOI: 10.1016/j.envexpbot.2012.11.002 | pl_PL |
dc.references | Romero-Aranda, R., Soria, T., Cuartero, J., (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Science, 160(2), 265-272. DOI: 10.1016/S0168-9452(00)00388-5 | pl_PL |
dc.references | Sairam, R.K., Rao, V.K., Srivastava, G.C., (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte. Plant Science, 163 (5), 1037-1046. DOI: 10.1016/S0168-9452(02)00278-9 | pl_PL |
dc.references | Sam, O., Ramirez, C., Coronado, M.J., Testillano, P.S., Risueño, M.C., (2003/4) Changes in tomato leaves induced by NaCl stress: leaf organization and cell ultrastructure. Biologia Plantarum, 47(3), 361-366. DOI: 1023/B:BIOP.000002387.58899.88 | pl_PL |
dc.references | Samardakiewicz, S., Suski, S., Gabryś, H., Woźny, A., (2013) Influence of lead (Pb2+) on chloroplast distribution patterns in Lemna trisulca L. mesophyll cell in darkness. In: 6th Polish Society of Experimental Plant Biology Conference. Lodz, Poland, September 16-19. BioTechologia. Journal of Biotechnology, Computational Biology and Bionanotechnology, 94(3), 401-402. | pl_PL |
dc.references | Silva, C., Martinez, V., Carvajal, M., (2008) Osmotic versus toxic effect of NaCl on pepper plants. Biologia Plantarum, 52(1), 72-79. DOI: 1007/s10535-008- 0010y | pl_PL |
dc.references | Snoussi, S.A., Abdul Hussain, F.H., Abdul Hussain, M.S., (2005) Dynamics of absorption of some biogenics salts at tomato and bean plant cultivated in saline medium. Journal of Central European Agriculture, 6(2), 151-156. | pl_PL |
dc.references | Stępień, P., Kłobus, G., (2006) Water relations and photosynthesis in Cucumis sativus L. leaves. Biologia Plantarum, 50(4), 610-616. DOI: 10.1007/s10535-006-0096-z | pl_PL |
dc.references | Stoeva, N., Kaymakanova, M., (2008) Effect of salt stress on the growth and photosynthesis rate of bean plants (Phaseolus vulgaris L.). Journal of Central European Agriculture, 9(3), 385-392. | pl_PL |
dc.references | Strogonov, B.P., (1964) Salt toxicity and adaptation of plants to salinity In: Poljakoff- Maber, A., Meyer, A.A (ed.): Physiological Basis of Salt Tolerance of Plants (as Affected by Various Types of Salinity). p.p. 130-162. Israel, Program for Scientific Translations, Jerusalem. | pl_PL |
dc.references | Tarchoune, I., Degl`Innocenti, E., Kadour, R., Guidi, L., Lachaal, M., Navari-Izzo, F., Ouerghi, Z., (2012) Effects of NaCl or Na2SO4 salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L. Acta Physiolgiae Plantarum, 34(2), 607-615. DOI: 10.1007/s11738-011-0861-2 | pl_PL |
dc.references | Trotta, A., Redondo-Gomez, S., Pagliano, C., Clemente, M.E.F., Rascio, N., La Rocca, N., Antonacci, A., Andreucci, F., Barbato, R., (2012) Chloroplast ultrastructure and thylakoid polypeptide composition are affected by different salt concentrations in the halophytic plant Arthrocnemum macrostachyum. Journal of Plant Physiology, 169(2), 111-116. DOI: 10.1016/j.jplph.2011.11.001 | pl_PL |
dc.references | Yamane, K., Kawasaki, M., Taniguchi, M., Miyake, H., (2012) Salinity-induced subcellular accumulation of H2O2 in leaves of rice. Protoplasma, 249(2), 301-308. DOI: 10.1007/s00709-011-0280-7 | pl_PL |
dc.references | Yang, F., Xiao, X., Zhang, S., Korpelainen, H., Li, Ch., (2009) Salt stress in response in Populus cathayana Rehder. Plant Science, 176(5), 669-677. DOI: 10.1016/j.plantsci.2009.02.008 | pl_PL |
dc.contributor.authorEmail | magdag@biol.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.5513/JCEA01/15.3.1478 | |
dc.relation.volume | 15(3) | pl_PL |