Salt-mediated changes in leaf mesophyll cells of Lycopersicon esculentum Mill. plants
Streszczenie
Five-week-old tomato plants (Lycopersicon esculentum) cv. Perkoz grown in pots
containing garden soil in a growth chamber were submitted to 50 or 150 mM NaCl for
1 h, 2 and 5 days. Tomato leaf anatomy generally did not change after short time
salinity, except 5-day-treatment with 150 mM NaCl, where changed cell shape
(shrunk and deformed) simultaneously with increased volume of intercellular spaces
(IS) were observed. Although leaf hydration (H) depleted only 1 h after 150 mM NaCl
treatment both salt concentrations generated two coexisting populations of saltaffected
mesophyll cells: (i) slightly-affected (Sl-A) which showed incipient
plasmolysis or slightly changed shapes, and (ii) severely-affected (Sv-A) which
showed severe plasmolysis; serious deformation of cell shape or disorganization
including cell degeneration. In Sl-A cells salinity changed location and shape of
chloroplasts which were: more rounded, with oversized starch grains (SG) (2d) or
more flat (5d). Salt-mediated changes were becoming more distinguished and
pronounced with length of 150 mM NaCl treatment. The amount of salt-affected cells
was changing during the experiment and depended on the salt concentration. In 50
mM-treated plants salt-affected cells appeared 1 h after treatment (~40%) and raised
up to 78% on 2nd day, however the population of Sl-A cells dominated. In 150 mM
NaCl-treated plants the percentage of affected cells raised during the experiment
from 75% to 99%. Firstly Sl-A cells dominated, but on the 5th day the majority was
Sv-A. Salt-affected cells were distributed quite evenly in palisade or spongy
mesophyll, except 2 d after treatment with 50 mM NaCl, when their number was
higher in the palisade mesophyll. Sv-A cells in the spongy mesophyll were located
mostly near the bundle while in the palisade mesophyll more irregularly. Different
susceptibility of cells to salt stress might be the consequence of an unequal
distribution of osmotic stress and subsequent ionic stress or physiological state of
cells.
Collections