Show simple item record

dc.contributor.authorGapińska, Magdalena
dc.contributor.authorGlińska, Sława
dc.date.accessioned2015-11-17T12:18:45Z
dc.date.available2015-11-17T12:18:45Z
dc.date.issued2014-01-01
dc.identifier.issn1332-9049
dc.identifier.urihttp://hdl.handle.net/11089/13886
dc.description.abstractFive-week-old tomato plants (Lycopersicon esculentum) cv. Perkoz grown in pots containing garden soil in a growth chamber were submitted to 50 or 150 mM NaCl for 1 h, 2 and 5 days. Tomato leaf anatomy generally did not change after short time salinity, except 5-day-treatment with 150 mM NaCl, where changed cell shape (shrunk and deformed) simultaneously with increased volume of intercellular spaces (IS) were observed. Although leaf hydration (H) depleted only 1 h after 150 mM NaCl treatment both salt concentrations generated two coexisting populations of saltaffected mesophyll cells: (i) slightly-affected (Sl-A) which showed incipient plasmolysis or slightly changed shapes, and (ii) severely-affected (Sv-A) which showed severe plasmolysis; serious deformation of cell shape or disorganization including cell degeneration. In Sl-A cells salinity changed location and shape of chloroplasts which were: more rounded, with oversized starch grains (SG) (2d) or more flat (5d). Salt-mediated changes were becoming more distinguished and pronounced with length of 150 mM NaCl treatment. The amount of salt-affected cells was changing during the experiment and depended on the salt concentration. In 50 mM-treated plants salt-affected cells appeared 1 h after treatment (~40%) and raised up to 78% on 2nd day, however the population of Sl-A cells dominated. In 150 mM NaCl-treated plants the percentage of affected cells raised during the experiment from 75% to 99%. Firstly Sl-A cells dominated, but on the 5th day the majority was Sv-A. Salt-affected cells were distributed quite evenly in palisade or spongy mesophyll, except 2 d after treatment with 50 mM NaCl, when their number was higher in the palisade mesophyll. Sv-A cells in the spongy mesophyll were located mostly near the bundle while in the palisade mesophyll more irregularly. Different susceptibility of cells to salt stress might be the consequence of an unequal distribution of osmotic stress and subsequent ionic stress or physiological state of cells.pl_PL
dc.language.isoenpl_PL
dc.publisherFaculty of Agriculture, University of Zagrebpl_PL
dc.relation.ispartofseriesJournal of Central European Agriculture;2014
dc.subjectleaf hydrationpl_PL
dc.subjectmesophyll cellspl_PL
dc.subjectosmotic stresspl_PL
dc.subjectplasmolysispl_PL
dc.subjectsalt stresspl_PL
dc.subjecttomatopl_PL
dc.titleSalt-mediated changes in leaf mesophyll cells of Lycopersicon esculentum Mill. plantspl_PL
dc.title.alternativeZmiany w komórkach mezofilu liści roślin Lycopersicon esculentum Mill. spowodowane zasoleniempl_PL
dc.typeArticlepl_PL
dc.page.number219-235pl_PL
dc.contributor.authorAffiliationGapińska, Magdalena, Laboratory of Electron Microscopy, Faculty of Biology and Environmental Protection, University of Lodzpl_PL
dc.contributor.authorAffiliationGlińska, Sława, Laboratory of Electron Microscopy, Faculty of Biology and Environmental Protection, University of Lodzpl_PL
dc.referencesBennici, A., Tani, C., (2009) Ultrastructural effects of salinity in Nicotiana bigelovi var. bigelovi callus cells and Allium cepa roots. Caryologia: International Journal of Cytology, Cytosystematics and Cytogentics, 62(2), 124-133.pl_PL
dc.referencesBennici, A., Tani, C., (2012) Ultrastructural characteristic of callus cells of Nicotiana tabacum L. var. BELW3 grown in presence of NaCl. Caryologia: International Journal of Cytology, Cytosystematics and Cytogentics, 65(1), 72-81. DOI: 10.1080/00087114.2012.678091pl_PL
dc.referencesBoughalleb, F., Denden, M., Tiba, B.B., (2009) Anatomical changes induced by increasing NaCl salinity in three fodder shrubs Nitraria retusa, Atriplex halimus and Medicago arborea. Acta Physiologiae Plantarum, 31(5), 947- 960. DOI: 10.1007/s11738-009-0310-7pl_PL
dc.referencesBoughalleb, F., Haylaoui, H., Denden, M., (2012) Effect of salt stress on growth, water relations, solute composition and photosynthetic capacity of the xerohallophyte Nitraria retusa (L.) Environment Research Journal, 6(1), 1-13. DOI: 10.3923/erj.2012.1.13pl_PL
dc.referencesBruns, S., Hecht-Buchholz, C., (1990) Light and electron microscope studies on the leaves of several potato cultivars after application of salt at variouspl_PL
dc.referencesCarpita, N., Sabularse, D., Montezinos, D., Delmer, D.P., (1979) Determination of the pore size of cell walls of living plant cells. Science, 205(4411), 1144-1147.pl_PL
dc.referencesCarter, J.M. and Nippert J.B., (2011) Physiological response of Tamarix ramosissima to extreme NaCl concentrations. American Journal of Plant Science, 2(6), 808-815. DOI: 10.4236/ajps.2011.26095pl_PL
dc.referencesChaparzadeh, N., D`Amico, M.L., Khavari-Nejad, R.A., Izzo, R., Navari-Izzo, F., (2004) Antioxidative responses of Calendula officinalis under salinity conditions. Plant Physiology and Biochemistry, 42(9), 695-701. DOI:10.1016/j.plaphy.2004.07.001pl_PL
dc.referencesDebouba, M., Gouida, H., Suzuki, A., Ghorbel, M.H., (2006) NaCl stress effects on enzymes involved in nitrogen assimilation pathway tomato “Lycopersicon esculentum” seedlings. Journal of Plant Physiology, 163 (12), 1247-1258. DOI: 10.1016/j.jplph.2005.09.012pl_PL
dc.referencesDe Felipe, M.R., Sanchez Conde, M.P., (1984) Mineral composition and ultrastructure of leaves of tomato plants (Lycopersicon esculentum Mill.) subjected to different osmotic pressures and calcium levels. Anales de Edafologia y Agrobiologia, 43(1-2), 269-282.pl_PL
dc.referencesDe Lacerda, C. F., Asis Junior, J.O., Lemos Filho, L.C.A., de Oliveira, T.S., Guimeras, F.V.A., Gomes-Filho, E., Prisco, J.T., Bezzerra, M.A., (2006) Morpho-physiological responses of cowpea leaves to salt stress. Brazilian Journal of Plant Physiology, 18(4), 455-465. DOI: 10.1590/S1677- 04202006000400003pl_PL
dc.referencesElavoumoottil, O.C., Martin, J.P., Moreno, M.L., (2003) Changes in sugars, sucrose synthase activity and protein in salinity tolerant callus and cell suspension culture of Brassica oleracea L. Biologia Plantarum, 46(1), 7-12. DOI:10.1023/A:1022389428782pl_PL
dc.referencesFAO (2008): Land and Plant Nutrition Management Service. Available at: http://www.fao.org/ag/agl/agll/spush.pl_PL
dc.referencesFernandez, F.M., Arrabaca, M.C., Carvalho, L.M.M., (2004) Sucrose metabolism in Lupinus albus L. under salt stress. Biologia Plantarum, 48(2), 317-319. DOI: 1023/B:BIOP.0000033465.59361.d2pl_PL
dc.referencesFricke, W., Hinde, P.S., Leigh, R.A., Tomos, A.D., (1995) Vacuolar solutes in the upper epidermis of barley leaves. Intercellular differences follow patterns. Planta, 196, 40-49. DOI: 1007/BF00193215pl_PL
dc.referencesGapińska, M., Skłodowska, M., Gabara, B., (2007) The morphological, biophysical and biochemical changes in the salinity-stressed tomato plant roots. In: 7th International Conference Ecophysiological Aspects of Plant Responces to Stress Factors. Kraków, Poland, September 19-22. Acta Physiolgiae Plantarum, 29 (Supl. 1), 58. DOI:10.1007/s11738-007-0082-xpl_PL
dc.referencesGiełwanowska, I., Szczuka, E., Bednara, J., Górecki, R., (2005) Anatomical feature and ultrastructure of Deschampsia antarctica (Poaceae) leaves from different growing habitats. Annals of Botany, 96(6), 1109-1119. DOI: 10.1093/aob/mci262pl_PL
dc.referencesGinbot, Z.G., Farrant, J.M., (2011) Physiological response of selected eragrostis species to water-deficit stress. African Journal of Biotechnology, 10(51): 10405-10417. DOI: 10.5897/AJB11.1124pl_PL
dc.referencesGlińska, S., Gapińska, M., (2013) The effect of pre-incubation of Allium cepa L. roots in the ATH-rich extract on Pb uptake and localization. Protoplasma, 250(2), 601-611. DOI: 10.1007/s00709-012-0445-zpl_PL
dc.referencesGupta, S.D., (2007) Plasma membrane ultrastucture in embryogenic culture of orchardgrass during NaCl stress. Biologia Plantarum, 51(4), 759-763. DOI: 10.1007/s10535-007-0155-0pl_PL
dc.referencesHernandez, J.A., Almansa, M.S., (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiologiae Plantarum, 115(2), 251-257. DOI:10.1034/j.1399-3054.2002.1150211.xpl_PL
dc.referencesHernandez, J.A., Ferrer, M.A., Jimenez, A., Ros-Barcelo, A., Sevilla, F., (2001) Antioxidant systems and O2 -·/H2O2 production in the apoplast of Pisum sativum L. leaves: its relation with NaCl-induced necrotic lesions in minor veins. Plant Physiology, 127(3), 817-831. DOI: 10.1104/pp.010188pl_PL
dc.referencesIvitis, E., Cherlet, M., Tóth, T., Lewińska, K.E., Tóth, G., (2013) Characterisation of productivity limitation of salt-affected lands in different climatic regions of Europe using remote sensing derived productivity indicators. Land Degradation and Development, 24(5), 438-452. DOI: 10.1002/ldr.1140pl_PL
dc.referencesJames, R.A., Munns, R., Caemmerer, S., Trejo, C., Miller, C., Condon, T., (2006) Photosynthetic capacity is related to the cellular and subcellular portioning of Na+, K+ and Cl- in salt-affected barley and durum wheat. Plant Cell and Environmental, 29(12), 2185-2197. DOI: 10.1111/j.1365-3040.2006.01592.xpl_PL
dc.referencesKhavari-Nejad, R.A. and Mostofi Y., (1998) Effects of NaCl and CaCl2 on photosynthetic pigments, saccharides and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica, 35(1), 151-154. DOI: 10.1023/A:1006846504261pl_PL
dc.referencesKholova, J., Sairam, R.K., Meena, R.C., (2010) Osmolytes and metal ions accumulation, oxidative stress and antioxidant enzymes activity as determinants of salinity stress tolerance in maize genotypes. Acta Physiolgiae Plantarum, 32(2), 477-486. DOI: 10.1007/s11738-009-0424-ypl_PL
dc.referencesMäkelä, P., Kärakkäinen, J., Somersalo, S., (2000) Effect of glycinebetaine on the chloroplast ultrastructure, chlorophyll and protein content and RuBPCO activities in tomato grown under drought or salinity. Biologia Plantarum, 43(3), 471-475. DOI: 10.1023/A:1026712426180pl_PL
dc.referencesMeloni, D.A., Oliva, M.A., Ruiz, H.A., Martines, C.A., (2001) Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Journal of Plant Nutrition, 24(3), 599-612. DOI: 10.1081/PLN-100104983pl_PL
dc.referencesMitsuya, S., Kawasaki, M., Taniguchi, M., Miyake, H., (2003) Relationship between salinity-induced damages and aging in rice leaf tissues. Plant Production Science, 6(3), 213-218. DOI: 10.1626/pps.6.213pl_PL
dc.referencesMitsuya, S., Yano, K., Kawasaki, M., Taniguchi, M., Miyake, H., (2002) Relationship between the distribution of Na and the damages caused by salinity in the leaves of rice seedlings grown under saline condition. Plant Production Science, 5(4), 269-274.pl_PL
dc.referencesMorales, M.A., Sanchez-Blanco, M.J., Olmos, E., Toreccilla, A., Alarcon, J.J., (1998) Changes in the growth, leaf water relations and cell ultrastructure in Argyranthemum coronopifolium plants under saline conditions. Journal of Plant Physiology, 153(1-2), 174-180. DOI: 10.1016/S0176-1617(98)80062- Xpl_PL
dc.referencesMunné-Bosch, S., Alegre, L., (2002) Plant aging increases oxidative stress in chloroplasts. Planta, 214(4), 608-615.DOI: 10.1007/s004250100646pl_PL
dc.referencesMunns, R., (2002) Comparative physiology of salt and water stress. Plant Cell and Environment, 25(2), 239-250. DOI: 10.1046/j.0016-8025.2001.00808.xpl_PL
dc.referencesNandwal, A.S, Kukreja, S., Kumar, N., Sharma, P.K., Jain, M., Mann, A., Singh, S., (2007) Plant water status, ethylene evolution, N2-fixing efficiency, antioxidant activity and lipid peroxidation in Cicer arietinum L. nodules as affected by short-term salinization and desalinization. Journal of Plant Physiology, 164(9), 1161-1169. DOI: 10.1016/j.jplph.2006.05.017pl_PL
dc.referencesNavarro, A., Bañon, S., Olmos, E., Sánchez-Blanco, M.J., (2007) Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. Plant Science, 172(3), 473-480. DOI: 10.1016/j.plantsci.2006.10.006pl_PL
dc.referencesPanagos, P., Van Liedekerke, M., Jones, A., Montanarella L., (2012) European Soil Data Centre: Response to European policy support and public data requirements. Land Use Policy, 29(2), 329-338. DOI: 10.1016/jlandusepol.2011.07.003pl_PL
dc.referencesPareek, A., Singla, S.L., Grover, A., (1997) Short-term salinity and high temperature stress-associated ultrastructural alterations in young leaf cells of Oryza sativa L. Annals of Botany, 80 (5), 629-639. DOI: 10.1006/anbo.1997.0494pl_PL
dc.referencesParida, A,K., Das, A.B., Mitra, B., (2004) Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees, 18, 167-174. DOI:10.1007/s00468-003-0293-8pl_PL
dc.referencesRahman, S., Matsumuro, T., Miyake, H., Takeoka, Y., (2000) Salinity-induced ultrastructural alterations in leaf cells of rice (Oryza sativa L.). Plant Production Science, 3(4), 422-429.pl_PL
dc.referencesRajashaker, C.B., Lafta, A., (1996) Cell-wall changes and cell tension in response to cold acclimation and exogenous abscisic acid in leaves and cell cultures. Plant Physiology, 111, 605-612. DOI: 10.1104/pp.111.2.605pl_PL
dc.referencesRadić, S., Stefanić, P.P., Lepedus, H., Roje, V., Pevalek-Kozlina, B., (2013) Salt tolerance of Centarea ragusina L. associated with efficient osmotic adjustment and increased antioxidative capacity. Environmental and Experimental Botany, 87(, 39-48. DOI: 10.1016/j.envexpbot.2012.11.002pl_PL
dc.referencesRomero-Aranda, R., Soria, T., Cuartero, J., (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Science, 160(2), 265-272. DOI: 10.1016/S0168-9452(00)00388-5pl_PL
dc.referencesSairam, R.K., Rao, V.K., Srivastava, G.C., (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte. Plant Science, 163 (5), 1037-1046. DOI: 10.1016/S0168-9452(02)00278-9pl_PL
dc.referencesSam, O., Ramirez, C., Coronado, M.J., Testillano, P.S., Risueño, M.C., (2003/4) Changes in tomato leaves induced by NaCl stress: leaf organization and cell ultrastructure. Biologia Plantarum, 47(3), 361-366. DOI: 1023/B:BIOP.000002387.58899.88pl_PL
dc.referencesSamardakiewicz, S., Suski, S., Gabryś, H., Woźny, A., (2013) Influence of lead (Pb2+) on chloroplast distribution patterns in Lemna trisulca L. mesophyll cell in darkness. In: 6th Polish Society of Experimental Plant Biology Conference. Lodz, Poland, September 16-19. BioTechologia. Journal of Biotechnology, Computational Biology and Bionanotechnology, 94(3), 401-402.pl_PL
dc.referencesSilva, C., Martinez, V., Carvajal, M., (2008) Osmotic versus toxic effect of NaCl on pepper plants. Biologia Plantarum, 52(1), 72-79. DOI: 1007/s10535-008- 0010ypl_PL
dc.referencesSnoussi, S.A., Abdul Hussain, F.H., Abdul Hussain, M.S., (2005) Dynamics of absorption of some biogenics salts at tomato and bean plant cultivated in saline medium. Journal of Central European Agriculture, 6(2), 151-156.pl_PL
dc.referencesStępień, P., Kłobus, G., (2006) Water relations and photosynthesis in Cucumis sativus L. leaves. Biologia Plantarum, 50(4), 610-616. DOI: 10.1007/s10535-006-0096-zpl_PL
dc.referencesStoeva, N., Kaymakanova, M., (2008) Effect of salt stress on the growth and photosynthesis rate of bean plants (Phaseolus vulgaris L.). Journal of Central European Agriculture, 9(3), 385-392.pl_PL
dc.referencesStrogonov, B.P., (1964) Salt toxicity and adaptation of plants to salinity In: Poljakoff- Maber, A., Meyer, A.A (ed.): Physiological Basis of Salt Tolerance of Plants (as Affected by Various Types of Salinity). p.p. 130-162. Israel, Program for Scientific Translations, Jerusalem.pl_PL
dc.referencesTarchoune, I., Degl`Innocenti, E., Kadour, R., Guidi, L., Lachaal, M., Navari-Izzo, F., Ouerghi, Z., (2012) Effects of NaCl or Na2SO4 salinity on plant growth, ion content and photosynthetic activity in Ocimum basilicum L. Acta Physiolgiae Plantarum, 34(2), 607-615. DOI: 10.1007/s11738-011-0861-2pl_PL
dc.referencesTrotta, A., Redondo-Gomez, S., Pagliano, C., Clemente, M.E.F., Rascio, N., La Rocca, N., Antonacci, A., Andreucci, F., Barbato, R., (2012) Chloroplast ultrastructure and thylakoid polypeptide composition are affected by different salt concentrations in the halophytic plant Arthrocnemum macrostachyum. Journal of Plant Physiology, 169(2), 111-116. DOI: 10.1016/j.jplph.2011.11.001pl_PL
dc.referencesYamane, K., Kawasaki, M., Taniguchi, M., Miyake, H., (2012) Salinity-induced subcellular accumulation of H2O2 in leaves of rice. Protoplasma, 249(2), 301-308. DOI: 10.1007/s00709-011-0280-7pl_PL
dc.referencesYang, F., Xiao, X., Zhang, S., Korpelainen, H., Li, Ch., (2009) Salt stress in response in Populus cathayana Rehder. Plant Science, 176(5), 669-677. DOI: 10.1016/j.plantsci.2009.02.008pl_PL
dc.contributor.authorEmailmagdag@biol.uni.lodz.plpl_PL
dc.identifier.doi10.5513/JCEA01/15.3.1478
dc.relation.volume15(3)pl_PL


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record