dc.contributor.author | Bednarski, Tadeusz | |
dc.date.accessioned | 2015-06-23T12:48:17Z | |
dc.date.available | 2015-06-23T12:48:17Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0208-6018 | |
dc.identifier.uri | http://hdl.handle.net/11089/10091 | |
dc.description.abstract | Declining participation rates in social surveys stimulate research to better
understand nonresponse mechanisms and their impact on related statistical inference. In
this paper we focus on potential causal relationship between nonresponse and job finding
in survey unemployment studies. Selected approaches are discussed from the perspective
of counterfactual causality concept. | pl_PL |
dc.description.abstract | Warunek nieobciążoności próby w statystycznych badaniach społecznych praktycznie nigdy
nie jest spełniony, a w sondażowych badaniach rynku pracy poziom odmowy udziału niejednokrotnie
przekracza 40%. Dokładność wniosków statystycznych w takich sytuacjach może być
poprawiona lepszym zrozumieniem mechanizmu odmowy. Szczególnie niekorzystną sytuacją
w statystycznej analizie danych bezrobocia jest zależność pomiędzy czasem poszukiwania pracy
i odmową udziału. W pracy omawia się metodę weryfikacji takiego mechanizmu odmowy
w perspektywie kontrfaktycznej analizy przyczynowości. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartofseries | Acta Universitatis Lodziensis, Folia Oeconomica;286 | |
dc.subject | survey non-response | pl_PL |
dc.subject | counterfactual analysis | pl_PL |
dc.subject | causality testing | pl_PL |
dc.title | Causality Analysis of Survey Nonresponse – A Counterfactual Perspective | pl_PL |
dc.title.alternative | Analiza przyczynowości odmowy w badaniach sondażowych w perspektywie kontrfaktycznej | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | [39]-47 | pl_PL |
dc.contributor.authorAffiliation | University of Wroclaw, Chair of Statistics | pl_PL |
dc.references | Bednarski T., Borowicz F. (2010) Analysis of non-response causality in labor market surveys.Acta Universitatis Lodziensis. Folia Oeconomica 253, s. 217-224, Lodz 2010 | pl_PL |
dc.references | Bednarski T. (2013). On robust causality nonresponse testing in duration studies under the Cox Model. Statistical Papers. DOI 10.1007/s00362-013-0523-0 | pl_PL |
dc.references | Breslow, N. E. (1975) Analysis of Survival Data under the Proportional Hazards Model". International Statistical Review 43, 45-58 | pl_PL |
dc.references | Cox, R.D. (1972) Regression model and life tables. J. Roy. Statist. Soc. Ser. B 34, 187-220 | pl_PL |
dc.references | Imbens G. W. and Rubin D. B. (1997). Bayesian Inference for Causal Effects in Randomized Experiments. The Annals of Statistics. Vol. 25, No. 1, 305-327 | pl_PL |
dc.references | Holland P.W. (1986). Statistics and Causal Inference. Journal of the American Statistical Association. Theory and Methods. Vol. 81, No 396, 945-960 | pl_PL |
dc.references | Neyman J. 1923 (1990). “On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9.” Statistical Science 5 (4): 465-472. Trans. Dorota M. Dabrowska and Terence P. Speed | pl_PL |
dc.references | Pearl J. (2000). Causality: Models, Reasoning, and Inference. Cambridge University Press | pl_PL |
dc.references | Pearl J. (2009). Causal inference in statistics: An overview. Statistics Survey. Vol 3. 96-146 | pl_PL |
dc.references | Pyy-Martikainen, M. and Rendtel, U. (2008) Assessing the impact of initial nonresponseand attrition in the analysis of unemployment duration with panel surveys. Advances In Statistical Analysis, Vol. 92, 297-318 | pl_PL |
dc.references | Spława-Neyman J. (1923). Próba uzasadnienia zastosowań rachunku prawdopodobieństwa do doświadczeń polowych. „Roczniki Nauk Rolniczych i Leśnych” t. 10, s. 1-51 | pl_PL |
dc.references | Stoop I., Billiet J., Koch A. and Fitzgerald R. (2010) Improvind Survey Response, Lessons Learned from European Social Survey. Wiley | pl_PL |
dc.references | Rubin D.B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology. Vol. 66, No. 5 688-701 | pl_PL |
dc.references | Rubin D.B. (1975). Bayesian inference for causality: the importance of randomization. Proc. Social Statistics Section. Am. Statist. Assoc. p. 233-239 | pl_PL |
dc.references | Rubin D. (1976). Inference and missing data. Biometrika 63, 581-592 | pl_PL |
dc.references | Rubin, D.B. (1978). Bayesian inference for causal effects. The role of randomization. Ann. Statist. 7, 34-58 | pl_PL |
dc.references | Rubin, D.B. (1990). Comment: Neyman (1923) and Causal Inference in Experiments and Observational Studies. Statistical Science. Vol.5 No. 4, 472-480 | pl_PL |
dc.references | Rubin, D.B. (2004). Direct and Indirect Causal Effects via Potential Outcomes. Scandinavian Journal of Statistics 31, 161-170 | pl_PL |
dc.references | Suppes P.C. (1970). A probabilistic Theory of Causality. Amsterdam, North Holland | pl_PL |
dc.references | Van den Berg, G. J., Lindeboom M. M., Dolton P. (2006). Survey nonresponse and the duration of unemployment, Journal of the Royal Statistical Society: Series A (Statistics in Society), Vol. 169, Number 3, 585-604, (2006) | pl_PL |