dc.contributor.author | Kötter, Thomas | |
dc.date.accessioned | 2015-01-20T13:12:07Z | |
dc.date.available | 2015-01-20T13:12:07Z | |
dc.date.issued | 1997 | |
dc.identifier.issn | 0208-6018 | |
dc.identifier.uri | http://hdl.handle.net/11089/6244 | |
dc.description.abstract | It is well known that nonparametric regression techniques do not have
good performance in high dimensional regression. However nonparametric regression is successful in one- or low-dimensional regression problems and is much more flexible than the parametric alternative. Hence, for high dimensional regression tasks one would like to reduce the regressor space to a lower dimension and then use nonparametric methods for curve estimation. A possible dimension reduction approach is Sliced Inverse Regression (L i 1991). It allows to find a base of a subspace in the regressor space which still carries important information for the regression. The vectors spanning this subspace are found with a technique similar to Principal Component Analysis and can be judged with the
eigenvalues that belong to these vectors. Asymptotic and simulation results for the eigenvalues and vectors are presented. | pl_PL |
dc.description.sponsorship | Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 dofinansowane zostało ze środków MNiSW w ramach działalności upowszechniającej naukę. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Oeconomica;Nr141/1997 | |
dc.subject | dimension reduction | pl_PL |
dc.subject | inverse regression | pl_PL |
dc.subject | linear projections | pl_PL |
dc.title | Asymptotic results for sliced inverse regression | pl_PL |
dc.title.alternative | Asymptotyczne rezultaty dla „sliced inverse regression” | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 73-82 | pl_PL |
dc.contributor.authorAffiliation | Humboldt-Universität zu Berlin | pl_PL |