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ASY M PTOTIC RESULTS FO R SLICED INVERSE REGRESSION

Abstract. It is well known that nonparametric regression techniques do not have 

good performance in high dimensional regression. However nonparam etric regression is 
successful in one- or low-dimensional regression problems and is much more flexible 

than the parametric alternative. Hence, for high dimensional regression tasks one would 

like to reduce the regressor space to a lower dimension and then use nonparam etric 
methods for curve estimation.

A possible dimension reduction approach is Sliced Inverse Regression (L i 1991). 

It allows to find a base o f a subspace in the regressor space which still carries 

im portant information for the regression. The vectors spanning this subspace are found 

with a technique similar to Principal Component Analysis and can be judged with the 

eigenvalues that belong to these vectors. Asymptotic and simulation results for the 
eigenvalues and vectors are presented.
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1. INTRODUCTION

In this paper we will discuss some properties of a certain dimension 
reduction method. First the question arises: Why should the dimensionality 
be reduced? The reason is that we can do nonparametric regression in low 
dimensional spaces but not in high dimensions. And, of course, we want 
to do nonparametric regression.

Parametric regression has the crucial drawback that it can only fit 
a predefined model which has to be selected before. However, if this model 
is the true one, the properties of the estimates are good and well known.

Nonparametric regression allows the data to speak for themselves. There 
are not pressed into a coreselett like a predefined model. Hence, it is much 
m ore flexible than parametric regression.
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Example:

The left plot shows the data with the true model. They are generated 
by y( =  5 +  e;, if y,e[4, 6], and y. =  x 2 +  e,; else, e, are standard normal. 
The data have a small plateau around * =  5 which cannot be found by 
the parametric fit of the model у = a + b +  c x 2 as shown in the second 
plot. The Goodness-of-Fit criterion s2/s2 is close to one (0.966) although 
the plateau feature was not detected. The third plot consists of the data 
and a nonparam tric smoother (lowess, C l e v e l a n d  1979).

But also nonparametric regression has a crucial drawback. Due to local 
averaging, that is the main aspect of nonparametric methods, the performance 
in high dimensional spaces cannot be very good.

Example: (P. J . Huber) Assume we have a uniform distribution on 
a 10-dimensional unit ball with radius 1. Then 5% of the data lie in a ball 
with a radius of 0.051/10 =  0.7411. It is not possible to gather local features 
in this space except we have a huge dataset.

Now, the question is what we can do if we have the following situation.

Y = m (ß J X , . . . , ß TKX , E) (1)

with: 1 <  К  <  d, К  -  unknown, m: I R K + i —>IR unknown, У is a random 
variable, X  is a IR d random vector, £ is a random variable with £[й|х] =  0.

As we do not know the dependence of Y  on X  it is not reasonable to 
choose a parametric approach. On the other hand d might be too large 
to use a nonparametric method directly (e.g. smoothing).

Hence, we want to reduce the dimensionality and then use a flexible 
nonparam etric regression algorithm. Here we will focus on the first task.

Remarks to model (1):

1. We do not allow redundancy in the representation of m  so without loss 
of generality we can assume that the ß t, i = 1, K,  are linear independent.



2. Neither the length nor the direction of the ß t, i = 1, K ,  are

identifiable. Only the space which is spanned by these vectors can be identified.
к

3. Model (I) includes models of the shape у  =  £  m ^ ß f  x) + 1: where
i=i

m^.IR—>IR, but it. is more general. Of course, here the directions o f the 
ß t, i = 1,..., K,  can be identified.

4. The ß'i: s are called effective dimension reduction directions (edr- 
-directions).

5. Conditioned on ß f X ,..., ß l X ,  X  and Y  are independent.
6. Y depends on X  only through ßJX, . . . ,  ß l X ,  i.e. FYlßrX J rx = Fr/X.

Sliced Inverse Regression (SIR) is able to work with model (1). It delivers 

d  directions ß, and due to the algorithm d  (eigen-) values l i with which 
the importance of the single ßt can be judged.

Furthermore, it is possible to establish asymptotic normality of

к

i=i

which can be interpreted as the ratio o f the variance which is declared by 
the first К  edr-directions.

So this statistic 4* helps us to find the number of ß t which has to be 
taken into account i.e. how big К  is.

2. SLICED INVERSE REGRESSIONS

Theorem. Given the model (1) and the assumption

V be/R" gilt: E[bTX \ß{X = ß \ x , ..., ß TkX  =  f í x ]  =  c0 +  f )  c ,ß fX  (2)
í53 1

the centered inverse regression curve E[X [Y ~  y]-~ E[X] lies in the linear 
subspace spanned by vectors Y .  ßh 1,..., К.

Sketch of the proof:

W ithout loss of generality E[X] — 0 
It is sufficient to show that 4 b e I R d:

bTZ xxß l = Q ~ b TE [ X \ Y = y ]  = 0



W ith the abbreviation E[X\y\: = E [ X \ Y  = y] and using £ [Z ]  =  
= E[E[X\Y=y]] .

E[X\y] = E [ E [ X \ y \ ß \ x , ß TKx, y]\y]

= E[E[X\ßJx , . . . ,ß lxM

Further it is

E[bTX \ ß i x , . . . , ß TKx] = 0 

< ^E [E2[bTX \ ß \ x , /?£х]] =  0 

Finally

E[E2[..]] =  £[£[...]£[...]]

=  E[E[E[bTX \ ß j x , ..., ß TKx X Tb \ß lx , ..., ßlx}}

= E[(c0 + % с № Х ) Х тЬ]
(=i

=  E[c0X Tb] + £  с tß] ' Y  b
i = i

=  0 +  0

because of the assumption. QED

Remark. The assumption (2) made above is equivalent to the fact that 
the distribution of X  is elliptical symmetric ( C o o k ,  W e i s b e r g  1991). 
It can be weakened as H a l l  and Li  (1993) showed. Another approach to 
find interesting subspaces is SIR II, which investigates the inverse covariance 
structure ( C o o k ,  W e i s b e r g  1991; L i 1991). The implementation and 
application o f the SIR algorithms can be found in K ö t t e r  (1995).

Corollar. Let Z  be the standardized random  vector with 
Z  =  ^ “ I/z( I - £ [ l ] ) .  Then E[Z|y] lies in the space which is spanned by

* = EMA-
NÓW it is easy to see that from =  0 it follows that E[bTZ \ y ] =  0 

and that the conditional covariance Cov[E[Z\y]] is degenerated to each 
direction orthogonal to the tjt.

So an algorithm to find edr-directions is to standardize X  then to 
estimate E[Z\y] and Cov[E[Z\y]]. Conduct a eigenvalue/eigenvector decom-
position, choose the eigenvectors to the largest eigenvalues and scale back 
to the original scale. This retransformed eigenvectors are estimators for the 
edr-directions.



3. ALGORITHM

First some notations: X, Y  and Z are data matrices, not random 
vectors. The observations are in the rows. Single observations are signed 
by small letters. The sample of size n is {xt,

x i = (xl i , . . . , x u)T,

X  =  ( x j , ..., x d)T,

Y = ( y b . . . ,yn)T,

* :  =  U n\ TnX ,  K- =
It

Estimate the edr-directions with
1. Standardize the x  values:

zi- =  ^ x x l2(x i — x) or Z : =  (X  — X ) Ž Xx /2

2 . Divide the range of yt in S  non overlapping slices H3, n3 denotes 
the number of observations within slice Ss .

=  É  hi.iyt) 
i= i

3. Compute the mean of z t over all slices.

1 n
*r =  -  I  M h .M

n s 1=1

4. Calculate the weighted covariance matrix.

V: =  nT1 £  n / , z j
i= i

5. Identify the eigenvalues XJ and eigenvectors tjt of V.
6. Transform the standardized edr-directions rjt back to the original 

scale. Now the estimates for the edr-directions are given by:

к  =  t ; i %

3.1. Costs of Computation

The following table shows the costs of different steps of the algorithm. 
In the costs column the terms are the order of the О function.



Costs Cause

nd 
nd2 
d3 

nd +  nd2 
Sn 
Sd2 
d3 

d3

Mean x  
Covariave
V -1/2

Standardize the matrix X  to Z  
Computation of n, and f ,

Eigendecomposition of 9  
Rescaling to the edr-directions /?,

The sum of the costs is of order 0(nd2 + Sn +  á 3). As we discuss later 
it is convenient to choose S =  0(n), so the sum is dominated by n2 if d is 
constant. It can be reduced to 0(nlog(n)) if the data are sorted before 
slicing. Sorting needs O(nlog(n)), then slicing the only 0(n).

This is a very good behaviour regarding the sample size n. Other 
nonparametric methods often have to be treated very tricky to achieve rates 
below 0(n2) (e.g. WARPing by kernel density estimation).

4. STATISTICAL PROPERTIES

It is possible to find a ^S-consistent estimate for Cov[E[X|y]]. With 
V  calculated from the algorithm, define

This estimator is -v/S^consistent for C ov[E [X |yeH j] and as S  goes to 
infinity for Cov[E[X\y]]l

It is easy to see that it is necessary that S  =  0(ri) to achieve ^/«-consistency 
for the estimates. In other words the number of elements within each slice 
should be constant. In the following we assume that ns =  n/S.

4.1. Asymptotic normality

Some asymptotic results can be derived:
-  asymptotic normality of uvec(V)

uvec(A): = (an , a u , a22, a 2d, a 33, ..., add)T

-  asymptotic normality of the vector
-  asymptotic normality of 4>к .



An important condition to show this asymptotics is that Ехлг and 
Z  have to be independent. In applications the data set has to be split. 
With one part £ xx is estimated, the other part is standardized by using 
this

Terms of the shape Cov[ffajffbk, <Tdi dm] (with ory is an element of t x x 12) 
appear within the com putations of the asymptotic covariance matrix. 

Unfortunately, these terms are of the same order (Op(l/>/S)) as the 
asymptotic covariance itself. In  order to overcome this problem, the 
computation of two independent estimates for t^xx'2 has to be done.

4.2. Main Idea of the Proofs

-  since the slices are disjoint the elements of V  vy can be written as 
a sum of S  independent terms. This yields to asymptotic normality.

-  with the Cramer -Wo ld-device the asymptotic distribution of uvec(V) 
can then be shown,

-  since the eigenvalues are continuous in the elements of the matrix 
(Theorem by Wielandt-Hoffmann, W i l k i n s o n  1965) thus the eigenvalues 

are also ^S-consistent.
-  the asymptotic distribution of (A,)?=1 can be derived by taking 

a connection between the asymptotic distribution of the characteristic 
polynom of V(\V— Я /1) and the eigenvalues Áľ

-  the asymptotic normality o f can then be shown by using the same 

technique as for principal component analysis ( M a r d i a  et al. 1979).

4.3. Asymptotic Expectation and Covariance

In this section only the formulae for the asymptotic expectation and 

covariance for the random vector uvec(P) are given. For the latter the 

computation is long and tedious ( K ö t t e r  1990).

Expectation. As the above mentioned estimate for uvec(Cov[E[Z\y]]) is 

’̂-consistent, the asymptotic expectation is Cov[E[Z\y]].
Covariance. The asymptotic covariance structure of uvec(Cov[E[Z\y]]) is:

lim Cov[vab, vC(J =  ~ £  £  £  Z  E ló'aJ°bk, adddn]
s~’c0 й _/=1* = И = 1т=1

{E[xJpx kp.x‘qx^I +  E[xi]E[xk]E[xl]E[xm] -  -  £[x']E[xm]



(<Cov[xJ, x k] -C ov[E[xJ\y]Elxk\y]] + nsE[E[xJ|y]J5ľ[jcfe[у]]) — 1 E [x^J5[x*] 

(Cov[xl, x m] -Cov[E[x l\y\E[xm\y]] + п,Е[Е[х1\у]Е[хт\у]])

where дц is the ( i , j )  elements of 2 ^ /2.

Define E* =  n2/(n,_ Ł)2 x limJ_ 00Cov[uvec(F)] then the following asymptotic 
result holds:

y / Š M  -  l t)U i )  ~  A N (0, D~L*DT)

with D: =  (uvec([V* -  -  l iId\/D'v(Xl) ) U 1 e I R d*«d+№

Furtherm ore, with Z =  DI,*DT the asymptotic distribution o f Ф is 
given by:

f. is standard normal distributed. Sample size n =  200.

SIR gives with 10 elements in each slice for the der-directions:

The eigenvalues were (0.6032, 0.3317, 0.1012) and the corresponding 

4* =  (0.5822, 0.9023,1), i.e. over 90% of the variance is declared by the 

first two edr-directions.

The third edr-direction Ji3 is nearly parallel to the vector which is 

orthogonal to the design plane span(( 1, 1 Л )Г, (1, -  1, -  I )7). The normal 

inner product o f e3 =  (0, -  1, l ) r /V (2) is ß & J ||ß 3 1| ||e3 1| =  0.99912.

with B: = (дФK/ d l l t K /dXd)).

5. NUM ERICAL EXAMPLE

0.3496 0.9327 

0.6759 0.2750 

0.6488 0.2333

-0 .0419  

-  0.7049 

0.7081



Additionally, the third eigenvalue A3 =  0.1012 is much smaller than the first 
two ones; SIR performs very well in this example.

The simple setting in of estimates into the asymptotic formulae yields 
to estimates for the variance of 4* which seem to be very sensitive to the 
generation of the subsamples and the subsample sizes. Here some work 
remains which has to be done in the future, how to estimate the asymptotic 
Covariance of E[Z\y],

6. SIM ULATION

W ith the same model as above, data were 500 times generated and SIR 
was conducted. In the following plots you see the smoothed density of 
each eigenvalue. They are very similar to the normal density which is also 
plotted (with the same mean and variance). It is remarkable that the 
variances of the eigenvalues are quite small.

M ean and variance of the simulation:

1 =  (0.6541, 0.3539, 0.0886)r  Var[X] =  (0.0010, 0.0019, 0.0006)T

first eigenvalue second eigenvalue third eigenvalue
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Thomas Kötter

ASYM PTOTYCZNE REZULTATY DLA „SLICED INVERSE REG RESSIO N ”

Jest rzeczą wiadomą, że techniki regresji nieparametrycznej nie funkcjonują właściwie 

w przypadku regresji wielowymiarowej. Jednakże są to techniki działające skutecznie w przypadku 

regresji jednowymiarowej bądź o małej liczbie wymiarów, a ponadto są bardziej elastyczne niż 

ich parametryczne odpowiedniki.

Oznacza to, że w przypadku regresji wielorakiej o dużych wymiarach wskazana jest 

redukcja wymiaru do niższego stopnia tak, aby możliwe było zastosowanie nieparametrycznych 

metod estymacji param etrów krzywych regresji.

Jednym z podejść zmierzających do redukcji wymiaru w regresji wielorakiej jest tzw. 

regresja odwrócona (L i (1991), która pozwala znaleźć taką pod przestrzeń w przestrzeni 

zmiennych objaśniających, by zawierała ona niezbędne informacje istotne dla zagadnienia 

regresji. Wektory, na których rozciągnięta jest ta  podprzestrzeń, znajduje się w podobny 

sposób jak  w analizie głównych czynników -  poprzez znajdowanie wektorów i podporząd-

kowanych danych wartości własnych.


