| dc.contributor.author | Rasga, João | |
| dc.contributor.author | Sernadas, Cristina | |
| dc.date.accessioned | 2025-12-12T15:23:26Z | |
| dc.date.available | 2025-12-12T15:23:26Z | |
| dc.date.issued | 2025-11-28 | |
| dc.identifier.issn | 0138-0680 | |
| dc.identifier.uri | http://hdl.handle.net/11089/56972 | |
| dc.description.abstract | Prawitz suggested expanding a natural deduction system for intuitionistic logic to include rules for classical logic constructors, allowing both intuitionistic and classical elements to coexist without losing their inherent characteristics. Looking at the added rules from the point of view of the Gödel-Gentzen translation, led us to propose a general method for the coexistent combination of two logics when a conservative translation exists from one logic (the source) to another (the host). Then we prove that the combined logic is a conservative extension of the original logics, thereby preserving the unique characteristics of each component logic. In this way there is no collapse of one logic into the other in the combination. We also demonstrate that a Gentzen calculus for the combined logic can be induced from a Gentzen calculus for the host logic by considering the translation. This approach applies to semantics as well. We then establish a general sufficient condition for ensuring that the combined logic is both sound and complete. We apply these principles by combining classical and intuitionistic logics capitalizing on the Gödel-Gentzen conservative translation, intuitionistic and S4 modal logics relying on the Gödel-McKinsey-Tarski conservative translation, and classical and Jaśkowski’s paraconsistent logics taking into account the existence of a conservative translation. | en |
| dc.language.iso | en | |
| dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
| dc.relation.ispartofseries | Bulletin of the Section of Logic;3 | en |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
| dc.subject | non-collapsing combination of logics | en |
| dc.subject | conservative translation | en |
| dc.subject | conservativeness of the combination | en |
| dc.subject | Gentzen calculus | en |
| dc.title | From Translations to Non-Collapsing Logic Combinations | en |
| dc.type | Article | |
| dc.page.number | 407-446 | |
| dc.contributor.authorAffiliation | Rasga, João - Universidade de Lisboa, Instituto Superior Técnico, Dep. Matemática | en |
| dc.contributor.authorAffiliation | Sernadas, Cristina - Universidade de Lisboa, Instituto Superior Técnico, Dep. Matemática | en |
| dc.identifier.eissn | 2449-836X | |
| dc.references | A. Avron, Classical Gentzen-type methods in propositional many-valued logics, [in:] Beyond Two: Theory and Applications of Multiple-valued Logic, Physica (2003), pp. 117–155, DOI: https://doi.org/10.1109/ISMVL.2001.924586 | en |
| dc.references | P. Blackburn, J. F. A. K. v. Benthem, Modal logic: A semantic perspective, [in:] P. Blackburn, J. F. A. K. v. Benthem, F. Wolter (eds.), Handbook of Modal Logic, Elsevier (2006), pp. 173–204. | en |
| dc.references | W. J. Blok, D. Pigozzi, Abstract Algebraic Logic and the Deduction Theorem, Tech. rep., Iowa State University (2001), available at https://faculty.sites.iastate.edu/dpigozzi/files/inline-files/aaldedth.pdf | en |
| dc.references | C. Caleiro, J. Ramos, From fibring to cryptofibring. A solution to the collapsing problem, Logica Universalis, vol. 1(1) (2007), pp. 71–92, DOI: https://doi.org/10.1007/s11787-006-0004-5 | en |
| dc.references | L. F. del Cerro, A. Herzig, Combining classical and intuitionistic logic, [in:] F. Baader, K. U. Schulz (eds.), Frontiers of Combining Systems, Springer (1996), pp. 93–102, DOI: https://doi.org/10.1007/978-94-009-0349-4_4 | en |
| dc.references | S. Demri, R. Goré, An O((n·logn)3)-time transformation from Grz into decidable fragments of classical first-order logic, [in:] Automated Deduction in Classical and Non-classical Logics, vol. 1761 of Lecture Notes in Computer Science, Springer (2000), pp. 152–166, DOI: https://doi.org/10.1007/3-540-46508-1_10 | en |
| dc.references | R. Diaconescu, Institution-independent Model Theory, Studies in Universal Logic, Birkhäuser (2008), DOI: https://doi.org/10.1007/978-3-7643-8708-2 | en |
| dc.references | I. M. L. D’Ottaviano, The completeness and compactness of a three-valued first-order logic, Revista Colombiana de Matemáticas, vol. 19(1-2) (1985), pp. 77–94. | en |
| dc.references | I. M. L. D’Ottaviano, N. C. A. da Costa, Sur un problème de Jaśkowski,Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences. Séries A et B, vol. 270 (1970), pp. A1349–A1353. | en |
| dc.references | I. M. L. D’Ottaviano, H. A. Feitosa, Paraconsistent logics and translations, Synthese, vol. 125(1-2) (2000), pp. 77–95, DOI: https://doi.org/10.1023/A:1005298624839 | en |
| dc.references | M. Dummett, The Logical Basis of Metaphysics, Harvard University Press (1991). | en |
| dc.references | J. L. Fiadeiro, A. Sernadas, Structuring theories on consequence, [in:] ADT 1987: Recent Trends in Data Type Specification, vol. 332 of Lecture Notes in Computer Science, Springer (1987), pp. 44–72, DOI: https://doi.org/10.1007/3-540-50325-0_3 | en |
| dc.references | D. M. Gabbay, An overview of fibred semantics and the combination of logics, [in:] Frontiers of Combining Systems, vol. 3, Kluwer (1996), pp. 1–55, DOI: https://doi.org/10.1007/978-94-009-0349-4_1 | en |
| dc.references | G. Gentzen, The Collected Papers of Gerhard Gentzen, North-Holland (1969). | en |
| dc.references | K. Gödel, Collected Works. Vol. I, Oxford University Press (1986). | en |
| dc.references | J. A. Goguen, R. M. Burstall, Introducing institutions, [in:] Logics of Programs, vol. 164 of Lecture Notes in Computer Science, Springer (1984), pp. 221–256, DOI: https://doi.org/10.1007/3-540-12896-4_366 | en |
| dc.references | J. A. Goguen, R. M. Burstall, Institutions: Abstract model theory for specification and programming, Journal of the Association for Computing Machinery, vol. 39(1) (1992), pp. 95–146, DOI: https://doi.org/10.1145/147508.147524 | en |
| dc.references | P. T. Johnstone, Stone Spaces, vol. 3 of Cambridge Studies in Advanced Mathematics, Cambridge University Press (1986), reprint of the 1982 edition. | en |
| dc.references | M. Kracht, F. Wolter, Properties of independently axiomatizable bimodal logics, The Journal of Symbolic Logic, vol. 56(4) (1991), pp. 1469–1485, DOI: https://doi.org/10.2307/2275487 | en |
| dc.references | P. H. Krauss, A constructive refinement of classical logic, [in:] Mathematische Schriften Kassel (1992), preprint 5. | en |
| dc.references | J. C. C. McKinsey, A. Tarski, Some theorems about the sentential calculi of Lewis and Heyting, The Journal of Symbolic Logic, vol. 13 (1948), pp. 1–15, DOI: https://doi.org/10.2307/2268135. | en |
| dc.references | J. Meseguer, General logics, [in:] Logic Colloquium, vol. 129, North-Holland (1989), pp. 275–329, DOI: https://doi.org/10.1016/S0049-237X(08)70132-0 | en |
| dc.references | L. C. Pereira, R. O. Rodriguez, Normalization, Soundness and Completeness for the Propositional Fragment of Prawitz’ Ecumenical System, Revista Portuguesa de Filosofia, vol. 73(3/4) (2017), pp. 1153–1168, DOI: https://doi.org/10.17990/RPF/2017_73_3_1153 | en |
| dc.references | E. Pimentel, L. C. Pereira, V. de Paiva, An ecumenical notion of entailment, Synthese, vol. 198(suppl. 22) (2021), pp. S5391–S5413, DOI: https://doi.org/10.1007/s11229-019-02226-5 | en |
| dc.references | K. R. Popper, On the theory of deduction II, Indagationes Math., vol. 10 (1948), pp. 111–120, DOI: https://doi.org/10.1007/978-3-030-94926-6_6 | en |
| dc.references | D. Prawitz, Classical versus intuitionistic logic, [in:] Why is this a Proof? Festschrift for Luiz Carlos Pereira, College Publications (2015), pp. 15–32. | en |
| dc.references | W. V. Quine, Philosophy of Logic, Foundations of Philosophy Series, Prentice-Hall (1970), sixth printing. | en |
| dc.references | J. Ramos, J. Rasga, C. Sernadas, Conservative translations revisited, Journal of Philosophical Logic, vol. 52(3) (2023), pp. 889–913, DOI: https://doi.org/10.1007/s10992-022-09691-3 | en |
| dc.references | J. Rasga, C. Sernadas, On combining intuitionistic and S4 modal logic, Bulletin of the Section of Logic, vol. 53(3) (2024), pp. 321–344, DOI: https://doi.org/10.18778/0138-0680.2024.11 | en |
| dc.references | J. Rasga, C. Sernadas, W. A. Carnielli, Reduction techniques for proving decidability in logics and their meet-combination, The Bulletin of Symbolic Logic, vol. 27(1) (2021), pp. 39–66, DOI: https://doi.org/10.1017/bsl.2021.17 | en |
| dc.references | V. Rybakov, Admissibility of Logical Inference Rules, North-Holland (1997). | en |
| dc.references | C. Sernadas, J. Rasga, W. A. Carnielli, Modulated fibring and the collapsing problem, The Journal of Symbolic Logic, vol. 67(4) (2002), pp. 1541–1569, DOI: https://doi.org/10.2178/jsl/1190150298 | en |
| dc.references | S. K. Thomason, Independent propositional modal logics, Studia Logica, vol. 39(2-3) (1980), pp. 143–144, DOI: https://doi.org/10.1007/BF00370317 | en |
| dc.references | A. S. Troelstra, H. Schwichtenberg, Basic Proof Theory, Cambridge University Press (2000), DOI: https://doi.org/10.1023/A:1008226228293 | en |
| dc.references | G. Voutsadakis, Categorical abstract algebraic logic: models of π-institutions, Notre Dame Journal of Formal Logic, vol. 46(4) (2005), pp. 439–460, DOI: https://doi.org/10.1305/ndjfl/1134397662 | en |
| dc.contributor.authorEmail | Rasga, João - joao.rasga@tecnico.ulisboa.pt | |
| dc.contributor.authorEmail | Sernadas, Cristina - cristina.sernadas@tecnico.ulisboa.pt | |
| dc.identifier.doi | 10.18778/0138-0680.2025.14 | |
| dc.relation.volume | 54 | |