Pokaż uproszczony rekord

dc.contributor.authorKologani, Mona Aaly
dc.contributor.authorTakallo, Mohammad Mohseni
dc.contributor.authorJun, Young Bae
dc.contributor.authorBorzooei, Rajab Ali
dc.date.accessioned2024-06-24T08:31:40Z
dc.date.available2024-06-24T08:31:40Z
dc.date.issued2023-12-18
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/52597
dc.description.abstractIn this paper, by using the notion of fuzzy points and equality algebras, the notions of fuzzy point equality algebra, equality-subalgebra, and ideal were established. Some characterizations of fuzzy subalgebras were provided by using such concepts. We defined the concepts of \((\in, \in)\) and \((\in, \in\! \vee \, {q})\)-fuzzy ideals of equality algebras, discussed some properties, and found some equivalent definitions of them. In addition, we investigated the relation between different kinds of \((\alpha,\beta)\)-fuzzy subalgebras and \((\alpha,\beta)\)-fuzzy ideals on equality algebras. Also, by using the notion of \((\in, \in)\)-fuzzy ideal, we defined two equivalence relations on equality algebras and we introduced an order on classes of \(X\), and we proved that the set of all classes of \(X\) by these order is a poset.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;2en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectequality algebraen
dc.subjectfuzzy seten
dc.subjectfuzzy pointen
dc.subjectfuzzy idealen
dc.subjectsub-equality algebrasen
dc.subject\((\in, \in)\)-fuzzy sub-equality algebrasen
dc.subject\((\in, \in\! \vee \, {q})\)-fuzzy sub-equality algebrasen
dc.subject\((q, \in\! \vee \, {q})\)-fuzzy sub-equality algebrasen
dc.titleFuzzy Sub-Equality Algebras Based on Fuzzy Pointsen
dc.typeArticle
dc.page.number195-222
dc.contributor.authorAffiliationKologani, Mona Aaly - Hatef Higher Education, Zahedan, Iranen
dc.contributor.authorAffiliationTakallo, Mohammad Mohseni - Shahid Beheshti University, Department of Mathematics, Faculty of Mathematical Sciences, Tehran, Iranen
dc.contributor.authorAffiliationJun, Young Bae - Gyeongsang National University, Department of Mathematics Education, Jinju, Koreaen
dc.contributor.authorAffiliationBorzooei, Rajab Ali - Istinye University, Department of Mathematics, Faculty of Engineering and Natural Sciences, Istanbul, Turkiye; Shahid Beheshti University, Department of Mathematics, Faculty of Mathematical Sciences, Tehran, Iranen
dc.identifier.eissn2449-836X
dc.referencesM. Aaly Kologani, M. Mohseni Takallo, R. Borzooei, Y. Jun, Implicative equality algebras and annihilators in equality algebras, Journal of Discrete Mathematical Sciences and Cryptography, (2021), pp. 1–18, DOI: https://doi.org/10.1080/09720529.2021.1876293en
dc.referencesM. Aaly Kologani, M. Mosheni Takallo, R. A. Borzooei, Y. B. Jun, Right and left mappings in equality algebras, Kragujevac Journal of Mathematics, vol. 46(5) (2022), pp. 815–832, DOI: https://doi.org/10.46793/KgJMat2205.815Ken
dc.referencesM. Aaly Kologani, X. Xin, Y. Jun, M. Mohseni Takallo, Positive implicative equality algebras and equality algebras with some types, Journal of Algebraic Hyperstructures and Logical Algebras, vol. 3(2) (2022), pp. 69–86, DOI: https://doi.org/10.52547/HATEF.JAHLA.3.2.6en
dc.referencesP. Allen, H. S. Kim, J. Neggers, Smarandache disjoint in BCK/d-algebras, Scientiae Mathematicae Japonicae, vol. 61(3) (2005), pp. 447–450.en
dc.referencesP. J. Allen, H. S. Kim, J. Neggers, Companion d-algebras, Mathematica Slovaca, vol. 57(2) (2007), pp. 93–106, DOI: https://doi.org/10.2478/s12175-007-0001-zen
dc.referencesP. J. Allen, H.-S. Kim, J. Neggers, Deformations of d/BCK-algebras, Bulletin of the Korean Mathematical Society, vol. 48(2) (2011), pp. 315–324, DOI: https://doi.org/10.4134/BKMS.2011.48.2.315en
dc.referencesR. Borzooei, F. Zebardast, M. Aaly Kologani, Some types of filters in equality algebras, Categories and General Algebraic Structures with Applications, vol. 7 (Special Issue on the Occasion of Banaschewski’s 90th Birthday (II)) (2017), pp. 33–55.en
dc.referencesR. A. Borzooei, M. Mohseni Takallo, M. Aaly Kologani, Y. B. Jun, Quotient Structures in Equality Algebras, Journal of Algebraic Systems, vol. 11(2) (2024), pp. 65–82, DOI: https://doi.org/10.22044/JAS.2022.11919.1608en
dc.referencesL. C. Ciungu, On pseudo-equality algebras, Archive for Mathematical Logic, vol. 53(5–6) (2014), pp. 561–570, DOI: https://doi.org/10.1007/s00153-014-0380-0en
dc.referencesA. Dvurečenskij, O. Zahiri, Pseudo equality algebras: revision, Soft Computing, vol. 20 (2016), pp. 2091–2101, DOI: https://doi.org/10.1007/s00500-015-1888-xen
dc.referencesB. Ganji Saffar, Fuzzy n-fold obstinate and maximal (pre) filters of EQ-algebras, Journal of Algebraic Hyperstructures and Logical Algebras, vol. 2(1) (2021), pp. 83–98, DOI: https://doi.org/10.52547/HATEF.JAHLA.2.1.6en
dc.referencesS. Jenei, Equality algebras, Studia Logica, vol. 100(6) (2012), pp. 1201–1209, DOI: https://doi.org/10.1007/s11225-012-9457-0en
dc.referencesS. Jenei, L. Kőrödi, On the variety of equality algebras, [in:] Proceedings of the 7th conference of the European Society for Fuzzy Logic and Technology, Atlantis Press (2011), pp. 153–155, DOI: https://doi.org/10.2991/eusflat.2011.1en
dc.referencesY. B. Jun, On (α, β)-fuzzy subalgebras of BCK/BCI-algebras, Bulletin of the Korean Mathematical Society, vol. 42(4) (2005), pp. 703–711, DOI: https://doi.org/10.4134/BKMS.2005.42.4.703en
dc.referencesV. Novák, B. De Baets, EQ-algebras, Fuzzy Sets and Systems, vol. 160(20) (2009), pp. 2956–2978, DOI: https://doi.org/10.1016/j.fss.2009.04.010en
dc.referencesA. Paad, Ideals in bounded equality algebras, Filomat, vol. 33(7) (2019), pp. 2113–2123, DOI: https://doi.org/10.2298/FIL1907113Pen
dc.referencesM. M. Takallo, M. A. Kologani, MBJ-neutrosophic filters of equality algebras, Journal of Algebraic Hyperstructures and Logical Algebras, vol. 1(2) (2020), pp. 57–75, DOI: https://doi.org/10.29252/HATEF.JAHLA.1.2.6en
dc.referencesL. A. Zadeh, Fuzzy sets, Information and Control, vol. 8(3) (1965), pp. 338–353, DOI: https://doi.org/10.1016/S0019-9958(65)90241-Xen
dc.referencesF. Zebardast, R. A. Borzooei, M. A. Kologani, Results on equality algebras, Information Sciences, vol. 381 (2017), pp. 270–282, DOI: https://doi.org/10.1016/j.ins.2016.11.027en
dc.contributor.authorEmailKologani, Mona Aaly - mona4011@gmail.com
dc.contributor.authorEmailTakallo, Mohammad Mohseni - mohammad.mohseni1122@gmail.com
dc.contributor.authorEmailJun, Young Bae - skywine@gmail.com
dc.contributor.authorEmailBorzooei, Rajab Ali - borzooei@sbu.ac.ir
dc.identifier.doi10.18778/0138-0680.2023.31
dc.relation.volume53


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0