Pokaż uproszczony rekord

dc.contributor.authorSayed Ahmed, Tarek
dc.date.accessioned2024-06-24T08:31:39Z
dc.date.available2024-06-24T08:31:39Z
dc.date.issued2024-02-12
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/52594
dc.description.abstractWe redefine a system of varieties definable by a schema of equations to include finite dimensions. Then we present a technique using ultraproducts enabling one to lift results proved for every finite dimension to the transfinite. Let \(\bf Ord\) denote the class of all ordinals. Let \(\langle \mathbf{K}_{\alpha}: \alpha\in \bf Ord\rangle\) be a system of varieties definable by a schema. Given any ordinal \(\alpha\), we define an operator \(\mathsf{Nr}_{\alpha}\) that acts on \(\mathbf{K}_{\beta}\) for any \(\beta>\alpha\) giving an algebra in \(\mathbf{K}_{\alpha}\), as an abstraction of taking \(\alpha\)-neat reducts for cylindric algebras. We show that for any positive \(k\), and any infinite ordinal \(\alpha\) that \(\mathbf{S}\mathsf{Nr}_{\alpha}\mathbf{K}_{\alpha+k+1}\) cannot be axiomatized by a finite schema over \(\mathbf{S}\mathsf{Nr}_{\alpha}\mathbf{K}_{\alpha+k}\) given that the result is valid for all finite dimensions greater than some fixed finite ordinal. We apply our results to cylindric algebras and Halmos quasipolyadic algebras with equality. As an application to our algebraic result we obtain a strong incompleteness theorem (in the sense that validitities are not captured by finitary Hilbert style axiomatizations) for an algebraizable extension of \(L_{\omega,\omega}\).en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;2en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectalgebraic logicen
dc.subjectsystems of varietiesen
dc.subjectultraproductsen
dc.subjectnon-finite axiomaitizabilityen
dc.titleLifting Results for Finite Dimensions to the Transfinite in Systems of Varieties Using Ultraproductsen
dc.typeArticle
dc.page.number145-154
dc.contributor.authorAffiliationCairo University, Department of Mathematics, Faculty of Science, Giza, Egypten
dc.identifier.eissn2449-836X
dc.referencesL. Henkin, J. Monk, A. Tarski, Cylindric Algebras, Part I, vol. 64 of Studies in Logic and the Foundations of Mathematics, North Holland, Amsterdam (1971).en
dc.referencesL. Henkin, J. Monk, A. Tarski, Cylindric Algebras, Part II, vol. 115 of Studies in Logic and the Foundations of Mathematics, North Holland, Amsterdam (1985), URL: https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/115/suppl/Cen
dc.referencesR. Hirsch, T. S. Ahmed, The neat embedding problem for algebras other than cylindric algebras and for infinite dimensions, Journal of Symbolic Logic, vol. 79(1) (2014), pp. 208–222, DOI: https://doi.org/10.1017/jsl.2013.20en
dc.referencesR. Hirsch, I. Hodkinson, Relation algebras by games, vol. 147 of Studies in Logic and the Foundations of Mathematics, Elsevier, Amsterdam (2002), URL: https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/147/suppl/Cen
dc.referencesR. Hirsch, I. Hodkinson, R. Maddux, Relation algebra reducts of cylindric algebras and an application to proof theory, Journal of Symbolic Logic, vol. 67(1) (2002), pp. 197–213, DOI: https://doi.org/10.2178/jsl/1190150037en
dc.referencesI. Sain, R. Thompson, Strictly finite schema axiomatization of quasi-polyadic algebras, [in:] H. Andr'eka, D. Monk, I. N'emeti (eds.), Algebraic Logic, North Holland, Amsterdam (1991), pp. 539–572.en
dc.contributor.authorEmailrutahmed@gmail.com
dc.identifier.doi10.18778/0138-0680.2024.02
dc.relation.volume53


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0