dc.contributor.author | Martínez-Rivillas, Daniel O. | |
dc.contributor.author | de Queiroz, Ruy J. G. B. | |
dc.date.accessioned | 2023-06-07T09:21:15Z | |
dc.date.available | 2023-06-07T09:21:15Z | |
dc.date.issued | 2023-04-25 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/47236 | |
dc.description.abstract | One takes advantage of some basic properties of every homotopic \(\lambda\)-model (e.g. extensional Kan complex) to explore the higher \(\beta\eta\)-conversions, which would correspond to proofs of equality between terms of a theory of equality of any extensional Kan complex. Besides, Identity types based on computational paths are adapted to a type-free theory with higher \(\lambda\)-terms, whose equality rules would be contained in the theory of any \(\lambda\)-homotopic model. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;1 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | higher lambda calculus | en |
dc.subject | homotopic lambda model | en |
dc.subject | Kan complex reflexive | en |
dc.subject | higher conversion | en |
dc.subject | homotopy type-free theory | en |
dc.title | The Theory of an Arbitrary Higher \(\lambda\)-Model | en |
dc.type | Other | |
dc.page.number | 39-58 | |
dc.contributor.authorAffiliation | Martínez-Rivillas, Daniel O. - Universidade Federal de Pernambuco, Centro de Informática, Av. Jornalista Aníbal Fernandes, s/n Recife, Pernambuco, Brazil | en |
dc.contributor.authorAffiliation | de Queiroz, Ruy J. G. B. - Universidade Federal de Pernambuco, Centro de Informática, Av. Jornalista Aníbal Fernandes, s/n Recife, Pernambuco, Brazil | en |
dc.identifier.eissn | 2449-836X | |
dc.references | R. de Queiroz, A. de Oliveira, A. Ramos, Propositional equality, identity types, and direct computational paths, South American Journal of Logic, vol. 2(2) (2016), pp. 245–296. | en |
dc.references | J. Lurie, Higher Topos Theory, Princeton University Press, Princeton and Oxford (2009), DOI: https://doi.org/10.1515/9781400830558 | en |
dc.references | D. Martínez-Rivillas, R. de Queiroz, Solving Homotopy Domain Equations, arXiv:2104.01195, (2021). | en |
dc.references | D. Martínez-Rivillas, R. de Queiroz, The ∞-groupoid generated by an arbitrary topological λ-model, Logic Journal of the IGPL (also arXiv:1906.05729), vol. 30 (2022), pp. 465–488, URL: https://doi.org/10.1093/jigpal/jzab015 | en |
dc.references | D. Martínez-Rivillas, R. de Queiroz, Towards a Homotopy Domain Theory, Archive for Mathematical Logic (also arXiv 2007.15082), (2022), URL: https://doi.org/10.1007/s00153-022-00856-0 | en |
dc.references | C. Rezk, Introduction to Quasicategories, Lecture Notes for course at University of Illinois at Urbana-Champaign (2022), URL: https://faculty.math.illinois.edu/~{}rezk/quasicats.pdf | en |
dc.contributor.authorEmail | Martínez-Rivillas, Daniel O. - domr@cin.ufpe.br | |
dc.contributor.authorEmail | de Queiroz, Ruy J. G. B. - ruy@cin.ufpe.br | |
dc.identifier.doi | 10.18778/0138-0680.2023.11 | |
dc.relation.volume | 52 | |