dc.contributor.author | Akhlaghinia, Narges | |
dc.contributor.author | Aaly Kologani, Mona | |
dc.contributor.author | Borzooei, Rajab Ali | |
dc.contributor.author | Xin, Xiao Long | |
dc.date.accessioned | 2022-03-10T17:28:32Z | |
dc.date.available | 2022-03-10T17:28:32Z | |
dc.date.issued | 2021-01-20 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/41064 | |
dc.description.abstract | In this paper, we studied the category of EQ-algebras and showed that it is complete, but it is not cocomplete, in general. We proved that multiplicatively relative EQ-algebras have coequlizers and we calculated coproduct and pushout in a special case. Also, we constructed a free EQ-algebra on a singleton. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;4 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nd/4.0 | |
dc.subject | EQ-algebras | en |
dc.subject | free EQ-algebras | en |
dc.subject | category theory | en |
dc.subject | universal algebra | en |
dc.subject | variety | en |
dc.title | On the Category of EQ-algebras | en |
dc.type | Other | |
dc.page.number | 397-419 | |
dc.contributor.authorAffiliation | Akhlaghinia, Narges - Shahid Beheshti University, Department of Mathematics | en |
dc.contributor.authorAffiliation | Aaly Kologani, Mona - Shahid Beheshti University, Department of Mathematics | en |
dc.contributor.authorAffiliation | Borzooei, Rajab Ali - Shahid Beheshti University, Department of Mathematics | en |
dc.contributor.authorAffiliation | Xin, Xiao Long - Northwest University, School of Mathematics | en |
dc.identifier.eissn | 2449-836X | |
dc.references | [1] J. Adámek, H. Herrlich, G. E. Strecker, Abstract and concrete categorise, the joy of cats, no. 17 in A Wiely series OF Texts, Monographs and Tracts Pure and applied mathematics, John Wiley and Sons, New york (1990). | en |
dc.references | [2] S. Awodey, Category theory, Oxford Logic Guides, Clarendon press, Oxford (2006). | en |
dc.references | [3] T. S. Blyth, Categories, Longman, London (1986). | en |
dc.references | [4] R. A. Borzooei, M. Bakhshi, O. Zahiri, Filter theory on hyper residuated lattices, Quasigroups and Related Systems, vol. 22 (2014), pp. 33–50, DOI: http://dx.doi.org/10.1090/S0002-9904-1935-06166-X. | en |
dc.references | [5] R. A. Borzooei, A. A. Estaji, M. Mobini, On the category of rough sets, Soft Computing, vol. 21 (2017), pp. 2201–2214, DOI: http://dx.doi.org/10.1007/s00500-016-2135-9. | en |
dc.references | [6] R. A. Borzooei, S. Kaviani, M. M. Zahed, Category of MV-algebras, Italian Journal of Pure and Applied Mathematics, vol. 19 (2016), pp. 61–74, DOI: http://dx.doi.org/10.2307/2267577. | en |
dc.references | [7] R. A. Borzooei, M. Mobini, M. M. Ebrahimi, The category of soft sets, Journal of Intelligent and Fuzzy Systems, vol. 28(1) (2015), pp. 157–171, DOI: http://dx.doi.org/110.3233/IFS-141286. | en |
dc.references | [8] S. Burris, H. P. Sankappanavar, A course in universal algebra (Graduate Texts in Mathematics), no. 78 in OXFORD LOGIC GUIDES, Springer-Verlag, New York-Berlin (1981), DOI: http://dx.doi.org/10.2307/2322184. | en |
dc.references | [9] R. Cignoli, D. Mundici, An elementary presentation of the equivalence between MV-algebras and (ell)-groups with strong units, Studia Logica, special issue on Many-valued logics, vol. 61 (1998), pp. 49–64. | en |
dc.references | [10] A. DiNola, L. Leustean, Compact representations of BL-algebras, Archive Mathematical Logic, vol. 42(8) (2003), pp. 737–761, DOI: http://dx.doi.org/10.1007/s00153-003-0178-y. | en |
dc.references | [11] A. Dvurečenskij, Commutative BCK-algebras with product, Demonstratio Mathematica,, vol. XXXIII(1) (2000), pp. 1–19, DOI: http://dx.doi.org/10.2307/2267577. | en |
dc.references | [12] G. Dymek, On the category of pseudo-BCI-algebras, Demonstatio Mathematica, vol. XLVI(4) (2013), pp. 631–644, DOI: http://dx.doi.org/10.1515/dema-2013-0479. | en |
dc.references | [13] M. El-Zekey, Representable good (EQ)-algebras, Soft Computing, vol. 14(9) (2010), pp. 1011–1023, DOI: http://dx.doi.org/10.1016/j.fss.2011.05.011. | en |
dc.references | [14] M. El-Zekey, V. Novák, R. Mesiar, On good (EQ)-algebras, Fuzzy Sets and Systems, vol. 178(1) (2011), pp. 1–23, DOI: http://dx.doi.org/10.1016/j.fss.2011.05.011. | en |
dc.references | [15] S. Maclane, Categories for the working mathematician (second ed.), vol. 5 of Graduate Texts in Mathematics, Springer-Verlag (1978), DOI: http://dx.doi.org/10.1007/978-1-4757-4721-8. | en |
dc.references | [16] V. Novák, (EQ)-algebras: Primary concepts and properties, in: Proc. Czech-Japan Seminar, Ninth Meeting, Kitakyushu and Nagasaki, Graduate School of Information, Waseda University, (2006). | en |
dc.references | [17] V. Novák, (EQ)-algebras-based fuzzy type theory and its extensions, Logic Journal of the IGPL, vol. 19(3) (2011), pp. 512–542, DOI: http://dx.doi.org/10.1093/jigpal/jzp087. | en |
dc.references | [18] V. Novák, B. D. Baets, (EQ)-algebras, Fuzzy Sets and Systems, vol. 160(20) (2009), pp. 2956–2978, DOI: http://dx.doi.org/0.1016/j.fss.2009.04.010. | en |
dc.references | [19] J. Yang, X. Zhang, Finite direct product of (EQ)-algebras, Soft Computing, vol. 23 (2019), pp. 7495–7504, DOI: http://dx.doi.org/10.1007/s00500-018-03687-5. | en |
dc.references | [20] F. Zebardast, R. A. Borzooei, M. A. Kologhani, Results on equality algebras, Information Sciences, vol. 381(1) (2017), pp. 270–282, DOI: http://dx.doi.org/10.1016/j.ins.2016.11.027. | en |
dc.contributor.authorEmail | Akhlaghinia, Narges - n_akhlaghinia@sbu.ac.ir | |
dc.contributor.authorEmail | Aaly Kologani, Mona - mona4011@gmail.com | |
dc.contributor.authorEmail | Borzooei, Rajab Ali - borzooei@sbu.ac.ir | |
dc.contributor.authorEmail | Xin, Xiao Long - xlxin@nwu.edu.cn | |
dc.identifier.doi | 10.18778/0138-0680.2021.01 | |
dc.relation.volume | 50 | |