Show simple item record

dc.contributor.authorNiki, Satoru
dc.date.accessioned2021-05-11T06:22:48Z
dc.date.available2021-05-11T06:22:48Z
dc.date.issued2020-12-30
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/35463
dc.description.abstractWe continue the investigation of the first paper where we studied logics with various negations including empirical negation and co-negation. We established how such logics can be treated uniformly with R. Sylvan's CCω as the basis. In this paper we use this result to obtain cut-free labelled sequent calculi for the logics.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;4en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectempirical negationen
dc.subjectco-negationen
dc.subjectlabelled sequent calculusen
dc.subjectintuitionismen
dc.titleEmpirical Negation, Co-Negation and the Contraposition Rule II: Proof-Theoretical Investigationsen
dc.typeOther
dc.page.number359-375
dc.contributor.authorAffiliationJapan Advanced Institute of Science and Technology School of Information Science 923-1292, 1-1 Asahidai, Nomi Ishikawa, Japanen
dc.identifier.eissn2449-836X
dc.references[1] M. De, Empirical Negation, Acta Analytica, vol. 28 (2013), pp. 49–69, DOI: http://dx.doi.org/10.1007/s12136-011-0138-9en
dc.references[2] M. De, H. Omori, More on Empirical Negation, [in:] R. Goreé, B. Kooi, A. Kurucz (eds.), Advances in Modal Logic, vol. 10, College Publications (2014), pp. 114–133.en
dc.references[3] H. Friedman, Intuitionistic Completeness of Heyting's Predicate Calculus, Notices of the American Mathematical Society, vol. 22(6) (1975), pp. A648–A648.en
dc.references[4] A. B. Gordienko, A Paraconsistent Extension of Sylvan's Logic, Algebra and Logic, vol. 46(5) (2007), pp. 289–296, DOI: http://dx.doi.org/10.1007/s10469-007-0029-8en
dc.references[5] V. N. Krivtsov, An intuitionistic completeness theorem for classical predicate logic, Studia Logica, vol. 96(1) (2010), pp. 109–115, DOI: http://dx.doi.org/10.1007/s11225-010-9273-3en
dc.references[6] S. Negri, Proof analysis in modal logic, Journal of Philosophical Logic, vol. 34(5–6) (2005), pp. 507–544, DOI: http://dx.doi.org/10.1007/s10992-005-2267-3en
dc.references[7] S. Negri, Proof analysis in non-classical logics, [in:] C. Dimitracopoulos, L. Newelski, D. Normann, J. Steel (eds.), ASL Lecture Notes in Logic, vol. 28, Cambridge University Press (2007), pp. 107–128, DOI: http://dx.doi.org/10.1017/CBO9780511546464.010en
dc.references[8] S. Negri, J. von Plato, Proof analysis: a contribution to Hilbert's last problem, Cambridge University Press (2011), DOI: http://dx.doi.org/10.1017/CBO9781139003513en
dc.references[9] G. Priest, Dualising Intuitionistic Negation, Principia, vol. 13(2) (2009), pp. 165–184, DOI: http://dx.doi.org/10.5007/1808-1711.2009v13n2p165en
dc.references[10] R. Sylvan, Variations on da Costa C Systems and dual-intuitionistic logics I. Analyses of C! and CC!, Studia Logica, vol. 49(1) (1990), pp. 47–65, DOI: http://dx.doi.org/10.1007/BF00401553en
dc.references[11] A. S. Troelstra, D. van Dalen, Constructivism in Mathematics: An Introduction, vol. II, Elsevier (1988).en
dc.references[12] W. Veldman, An Intuitionistic Completeness Theorem for Intuitionistic Predicate Logic, The Journal of Symbolic Logic, vol. 41(1) (1976), pp. 159–166, DOI: http://dx.doi.org/10.2307/2272955en
dc.contributor.authorEmailsatoruniki@jaist.ac.jp
dc.identifier.doi10.18778/0138-0680.2020.13
dc.relation.volume49


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0