dc.contributor.author | Kostrzycka, Zofia | |
dc.date.accessioned | 2021-05-11T06:22:47Z | |
dc.date.available | 2021-05-11T06:22:47Z | |
dc.date.issued | 2020-12-30 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/35462 | |
dc.description.abstract | We try to translate the intuitionistic propositional logic INT into Brouwer's modal logic KTB. Our translation is motivated by intuitions behind Brouwer's axiom p →☐◊p The main idea is to interpret intuitionistic implication as modal strict implication, whereas variables and other positive sentences remain as they are. The proposed translation preserves fragments of the Rieger-Nishimura lattice which is the Lindenbaum algebra of monadic formulas in INT. Unfortunately, INT is not embedded by this mapping into KTB. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;4 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | intuitionistic logic | en |
dc.subject | Kripke frames | en |
dc.subject | Brouwer's modal logic | en |
dc.title | From Intuitionism to Brouwer's Modal Logic | en |
dc.type | Other | |
dc.page.number | 343-358 | |
dc.contributor.authorAffiliation | Opole University of Technology ul. Sosnkowskiego 31 45-272 Opole, Poland | en |
dc.identifier.eissn | 2449-836X | |
dc.references | [1] O. Becker, Zur Logik der Modalitäten, Jahrbuch für Philosophie und phänomenologische Forschung, vol. 11 (1930), pp. 497–548. | en |
dc.references | [2] P. Blackburn, M. de Rijke, Y. Venema, Modal logic, vol. 53 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge (2001), DOI: http://dx.doi.org/10.1017/CBO9781107050884 | en |
dc.references | [3] A. Chagrov, M. Zakharyaschev, Modal Logic, vol. 35 of Oxford Logic Guides, Oxford University Press, Oxford (1997). | en |
dc.references | [4] G. Hughes, M. Cresswell, An Introduction to Modal Logic, Methuen and Co. Ltd., London (1968). | en |
dc.references | [5] C. I. Lewis, C. H. Langford, Symbolic Logic, Appleton-Century-Crofts, New York (1932). | en |
dc.references | [6] K. Matsumoto, Reduction theorem in Lewis's sentential calculi, Mathematica Japonicae, vol. 3 (1955), pp. 133–135. | en |
dc.references | [7] J. C. C. McKinsey, A. Tarski, Some Theorems About the Sentential Calculi of Lewis and Heyting, Journal of Symbolic Logic, vol. 13(1) (1948), pp. 1–15, DOI: http://dx.doi.org/10.2307/2268135 | en |
dc.references | [8] V. V. Rybakov, A modal analog for Glivenko's theorem and its applications, Notre Dame Journal of Formal Logic, vol. 3(2) (1992), pp. 244–248, DOI: http://dx.doi.org/10.1305/ndj/1093636103 | en |
dc.references | [9] I. B. Shapirovsky, Glivenko's theorem, finite height, and local tabularity (2018), arXiv:1806.06899. | en |
dc.references | [10] A. Wroński, J. Zygmunt, Remarks on the free pseudo-boolean algebra with one-element free-generating set, Reports on Mathematical Logic, vol. 2 (1974), pp. 77–81. | en |
dc.contributor.authorEmail | z.kostrzycka@po.edu.pl | |
dc.identifier.doi | 10.18778/0138-0680.2020.22 | |
dc.relation.volume | 49 | |