Pokaż uproszczony rekord

dc.contributor.authorKostrzycka, Zofia
dc.date.accessioned2021-05-11T06:22:47Z
dc.date.available2021-05-11T06:22:47Z
dc.date.issued2020-12-30
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/35462
dc.description.abstractWe try to translate the intuitionistic propositional logic INT into Brouwer's modal logic KTB. Our translation is motivated by intuitions behind Brouwer's axiom p →☐◊p The main idea is to interpret intuitionistic implication as modal strict implication, whereas variables and other positive sentences remain as they are. The proposed translation preserves fragments of the Rieger-Nishimura lattice which is the Lindenbaum algebra of monadic formulas in INT. Unfortunately, INT is not embedded by this mapping into KTB.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectintuitionistic logicen
dc.subjectKripke framesen
dc.subjectBrouwer's modal logicen
dc.titleFrom Intuitionism to Brouwer's Modal Logicen
dc.typeOther
dc.page.number343-358
dc.contributor.authorAffiliationOpole University of Technology ul. Sosnkowskiego 31 45-272 Opole, Polanden
dc.identifier.eissn2449-836X
dc.references[1] O. Becker, Zur Logik der Modalitäten, Jahrbuch für Philosophie und phänomenologische Forschung, vol. 11 (1930), pp. 497–548.en
dc.references[2] P. Blackburn, M. de Rijke, Y. Venema, Modal logic, vol. 53 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge (2001), DOI: http://dx.doi.org/10.1017/CBO9781107050884en
dc.references[3] A. Chagrov, M. Zakharyaschev, Modal Logic, vol. 35 of Oxford Logic Guides, Oxford University Press, Oxford (1997).en
dc.references[4] G. Hughes, M. Cresswell, An Introduction to Modal Logic, Methuen and Co. Ltd., London (1968).en
dc.references[5] C. I. Lewis, C. H. Langford, Symbolic Logic, Appleton-Century-Crofts, New York (1932).en
dc.references[6] K. Matsumoto, Reduction theorem in Lewis's sentential calculi, Mathematica Japonicae, vol. 3 (1955), pp. 133–135.en
dc.references[7] J. C. C. McKinsey, A. Tarski, Some Theorems About the Sentential Calculi of Lewis and Heyting, Journal of Symbolic Logic, vol. 13(1) (1948), pp. 1–15, DOI: http://dx.doi.org/10.2307/2268135en
dc.references[8] V. V. Rybakov, A modal analog for Glivenko's theorem and its applications, Notre Dame Journal of Formal Logic, vol. 3(2) (1992), pp. 244–248, DOI: http://dx.doi.org/10.1305/ndj/1093636103en
dc.references[9] I. B. Shapirovsky, Glivenko's theorem, finite height, and local tabularity (2018), arXiv:1806.06899.en
dc.references[10] A. Wroński, J. Zygmunt, Remarks on the free pseudo-boolean algebra with one-element free-generating set, Reports on Mathematical Logic, vol. 2 (1974), pp. 77–81.en
dc.contributor.authorEmailz.kostrzycka@po.edu.pl
dc.identifier.doi10.18778/0138-0680.2020.22
dc.relation.volume49


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0