Pokaż uproszczony rekord

dc.contributor.authorYang, Eunsuk
dc.date.accessioned2021-05-05T15:52:35Z
dc.date.available2021-05-05T15:52:35Z
dc.date.issued2020-03-30
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/35369
dc.description.abstractThis paper deals with pretabularity of fuzzy logics. For this, we first introduce two systems NMnfp and NM½, which are expansions of the fuzzy system NM (Nilpotent minimum logic), and examine the relationships between NMnfp and the another known extended system NM—. Next, we show that NMnfp and NM½ are pretabular, whereas NM is not. We also discuss their algebraic completeness.  en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;1en
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectpretabularityen
dc.subjectnilpotent minimum logicen
dc.subjectalgebraic semanticsen
dc.subjectfuzzy logicen
dc.subjectfinite model propertyen
dc.titleNilpotent Minimum Logic NM and Pretabularityen
dc.typeOther
dc.page.number1–11
dc.contributor.authorAffiliationJeonbuk National University, Department of Philosophy & Institute of Critical Thinking and Writingen
dc.identifier.eissn2449-836X
dc.references[1] L. Běhounek and P. Cintula, Fuzzy logics as the logics of chains, Fuzzy Sets and Systems, Vol. 157 (2006), pp. 604–610.en
dc.references[2] P. Cintula, Weakly Implicative (Fuzzy) Logics I: Basic properties, Archive for Mathematical Logic, Vol. 45 (2006), pp. 673–704.en
dc.references[3] J. M. Dunn, Algebraic completeness for R-mingle and its extensions, The Journal of Symbolic Logic, Vol. 35 (1970), pp. 1–13.en
dc.references[4] J. M. Dunn and G. Hardegree, Algebraic Methods in Philosophical Logic, Oxford University Press, Oxford, 2001.en
dc.references[5] J. M. Dunn and R. K. Meyer, Algebraic completeness results for Dummett's LC and its extensions, Mathematical Logic Quarterly, Vol. 17 (1971), pp. 225–230.en
dc.references[6] F. Esteva and L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets and Systems, Vol. 124 (2001), pp. 271–288.en
dc.references[7] D. Gabbay and V. B. Shetman, Undecidability of modal and intermediate first-order logics with two individual variables, The Journal of Symbolic Logic, Vol. 58 (1993), pp. 800–823.en
dc.references[8] L. Galminas and J. G. Mersch, A pretabular classical relevance logic, Studia Logica, Vol. 100 (2012), pp. 1211–1221.en
dc.references[9] J. Gispert, Axiomatic extensions of the nilpotent minimum logic, Reports on Mathematical Logic, Vol. 37 (2003), pp. 113–123.en
dc.references[10] C. Noguera, F. Esteva, and J. Gispert, On triangular norm based axiomatic extensions of the weak nilpotent minimum logic, Mathematical Logic Quarterly, Vol. 54 (2008), pp. 387–409.en
dc.references[11] V. Rybakov, V. Kiyatkin, and M. Terziler, Independent bases for rules admissible in pretabular logics, Logic Journal of the Interest Group in Pure and Applied Logics, Vol. 7 (1999), pp. 253–266.en
dc.references[12] T. Sugihara, Strict implication free from implicational paradoxes, Memoirs of the Faculty of Liberal Arts, Fukui University, Series 1, 1955, pp. 55–59.en
dc.references[13] K. Świrydowicz, There exists an uncountable set of pretabular extensions of the relevant logic R and each logic of this set is generated by a variety of nite height, The Journal of Symbolic Logic, Vol. 73 (2008), pp. 1249–1270.en
dc.contributor.authorEmaileunsyang@jbnu.ac.kr
dc.identifier.doi10.18778/0138-0680.2020.01
dc.relation.volume49


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

http://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako http://creativecommons.org/licenses/by-nc-nd/4.0