Pokaż uproszczony rekord

dc.contributor.authorJarmużek, Tomasz
dc.contributor.authorMalinowski, Jacek
dc.date.accessioned2021-05-05T15:50:39Z
dc.date.available2021-05-05T15:50:39Z
dc.date.issued2019-10-30
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/35363
dc.description.abstractIn this paper we investigate Boolean connexive logics in a language with modal operators: □, ◊. In such logics, negation, conjunction, and disjunction behave in a classical, Boolean way. Only implication is non-classical. We construct these logics by mixing relating semantics with possible worlds. This way, we obtain connexive counterparts of basic normal modal logics. However, most of their traditional axioms formulated in terms of modalities and implication do not hold anymore without additional constraints, since our implication is weaker than the material one. In the final section, we present a tableau approach to the discussed modal logics.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectBoolean connexive logicsen
dc.subjectconnexive logicen
dc.subjectmodal Boolean connexive logicsen
dc.subjectmodal logicsen
dc.subjectnormal modal logicsen
dc.subjectpossible worlds semanticsen
dc.subjectrelatednessen
dc.subjectrelating logicen
dc.subjectrelating semanticsen
dc.subjecttableau methodsen
dc.titleModal Boolean Connexive Logics: Semantics and Tableau Approachen
dc.typeOther
dc.page.number213-243
dc.contributor.authorAffiliationJarmużek, Tomasz - Nicolaus Copernicus University in Toruń, Poland, Department of Logicen
dc.contributor.authorAffiliationMalinowski, Jacek - Polish Academy of Sciences, Institute of Philosophy and Sociologyen
dc.identifier.eissn2449-836X
dc.referencesR. L. Epstein, Relatedness and Implication, Philosophical Studies, Vol. 36 (1979), pp. 137–173.en
dc.referencesR. L. Epstein, The Semantic Foundations of Logic. Vol. 1: Propositional Logics, Nijhoff International Philosophy Series, 1990.en
dc.referencesT. Jarmużek, Tableau Metatheorem for Modal Logics, [in:] R. Ciuni, H. Wansing, C. Willkomennen (eds.), Recent Trends in Philosphical Logic, Trends in Logic, Springer Verlag 2013, pp. 105–128.en
dc.referencesT. Jarmużek and B. Kaczkowski, On some logic with a relation imposed on formulae: tableau system F, Bulletin of the Section of Logic, Vol. 43, No. 1/2 (2014), pp. 53–72.en
dc.referencesT. Jarmużek and M. Klonowski, On logic of strictly-deontic modalities, submitted to a review.en
dc.referencesT. Jarmużek and J. Malinowski, Boolean Connexive Logics, Semantics and tableau approach, Logic and Logical Philosophy, Vol. 28, No. 3 (2019), pp. 427–448, DOI: http://dx.doi.org/10.12775/LLP.2019.003en
dc.referencesA. Kapsner, Strong Connexivity, Thought, Vol. 1 (2012), pp. 141–145.en
dc.referencesA. Kapsner, Humble Connexivity, Logic and Logical Philosophy, Vol. 28, No. 2 (2019), DOI: http://dx.doi.org/10.12775/LLP.2019.001en
dc.referencesS. McCall, A History of Connexivity, [in:] D. M. Gabbay et al. (eds.), Handbook of the History of Logic, Vol. 11, pp. 415–449, Logic: A History of its Central Concepts, Amsterdam: Elsevier 2012.en
dc.referencesH. Omori, Towards a bridge over two approaches in connexivelogics, Logic and Logical Philosophy, Vol. 28, No. 2 (2019), DOI: http://dx.doi.org/10.12775/LLP.2019.005en
dc.referencesD. N. Walton, Philosophical basis of relatedness logic, Philosophical Studies, Vol. 36, No. 2 (1979), pp. 115–136.en
dc.referencesH. Wansing and M. Unterhuber, Connexive conditional logic. Part 1, Logic and Logical Philosophy, Vol. 28, No. 2 (2019), DOI: http://dx.doi.org/10.12775/LLP.2018.018en
dc.contributor.authorEmailJarmużek, Tomasz - Tomasz.Jarmuzek@umk.pl
dc.contributor.authorEmailMalinowski, Jacek - Jacek.Malinowski@studialogica.org
dc.identifier.doi10.18778/0138-0680.48.3.05
dc.relation.volume48


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0