dc.contributor.author | Witczak, Tomasz | |
dc.date.accessioned | 2021-05-05T15:50:38Z | |
dc.date.available | 2021-05-05T15:50:38Z | |
dc.date.issued | 2019-10-30 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/35361 | |
dc.description.abstract | We present three examples of topological semantics for intuitionistic modal logic with one modal operator □. We show that it is possible to treat neighborhood models, introduced earlier, as topological or multi-topological. From the neighborhood point of view, our method is based on differences between properties of minimal and maximal neighborhoods. Also we propose transformation of multitopological spaces into the neighborhood structures. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;3 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | intuitionistic modal logic | en |
dc.subject | neighbourhood semantics | en |
dc.subject | topological semantics | en |
dc.subject | Kripke frames | en |
dc.subject | soundness and completeness | en |
dc.title | Topological and Multi-Topological Frames in the Context of Intuitionistic Modal Logic | en |
dc.type | Other | |
dc.page.number | 187-205 | |
dc.contributor.authorAffiliation | University of Silesia, Institute of Mathematics | en |
dc.identifier.eissn | 2449-836X | |
dc.references | M. Božic, K. Došen, Models for normal intuitionistic modal logics, Studia Logica, Vol. XLIII (1984). | en |
dc.references | Á. Császár, Generalized topology, generalized continuity, Acta Mathematica Hungarica, Vol. 96, No. 4 (2002), pp. 351–357. | en |
dc.references | M. J. Collinson, B. P. Hilken, D. E. Rydeheard, An adjoint construction for topological models of intuitionistic modal logic. Extended abstract, http://sierra.nmsu.edu/morandi/old%20files/TbilisiConference/Collinson.pdf | en |
dc.references | J. M. Davoren, Topological Semantics and Bisimulations for Intuitionistic Modal Logics and Their Classical Companion Logics, Logical Foundations of Computer Science 2007, Springer 2007. | en |
dc.references | J. M. Davoren, V. Coulthard, T. Moor, R. P. Goré, A. Nerode, On Intuitionistic Modal and Tense Logics and Their Classical Companion Logics: Topological Semantics and Bisimulations, Annals of Pure and Applied Logic, Vol. 161 (2009), pp. 349–367. | en |
dc.references | J. M. Davoren, V. Coulthard, T. Moor, R. P. Goré, A. Nerode, Topological semantics for Intuitionistic modal logics and spatial discretisation by A/D maps, [in:] Workshop on Intuitionistic Modal Logic and Applications (IMLA), Copenhagen, Denmark 2002. | en |
dc.references | D. de Jongh, F. Sh. Maleki, Two neighborhood semantics for subintuitionistic logics, http://events.illc.uva.nl/Tbilisi/Tbilisi2017/uploaded_files/inlineitem/Dick_de_Jongh_Fateme_Shirmohammadzadeh_Maleki.pdf | en |
dc.references | D. de Jongh, F. Sh. Maleki, Weak subintuitionistic logics, https://www.illc.uva.nl/Research/Publications/Reports/PP-2016-12.text.pdf | en |
dc.references | M. Moniri, F. S. Maleki, Neighborhood semantics for basic and intuitionistic logic, Logic and Logical Philosophy, Vol. 23 (2015), pp. 339–355. | en |
dc.references | E. Pacuit, Neighborhood Semantics for Modal Logic, Springer International Publishing AG 2017. | en |
dc.references | V. H. Sotirov, Modal Theories with Intuitionistic Logic, [in:] Mathematical Logic, Proceedings of the Conference on Mathematical Logic, Dedicated to the Memory of A. A. Markov (1903–1979), September 22–23, 1980, pp. 139–171, Sofia 1984. | en |
dc.references | T. Speer, A Short Study of Alexandroff Spaces, https://arxiv.org/pdf/0708.2136.pdf | en |
dc.references | T. Witczak, Generalized Topological Semantics for Weak Modal Logics, https://arxiv.org/pdf/1904.06099.pdf | en |
dc.references | T. Witczak, Intuitionistic Modal Logic Based on Neighborhood Semantics Without Superset Axiom, https://arxiv.org/pdf/1707.03859.pdf | en |
dc.contributor.authorEmail | tm.witczak@gmail.com | |
dc.identifier.doi | 10.18778/0138-0680.48.3.03 | |
dc.relation.volume | 48 | |