Pokaż uproszczony rekord

dc.contributor.authorJun, Young Bae
dc.contributor.authorXin, Xiao Long
dc.date.accessioned2021-05-05T15:50:38Z
dc.date.available2021-05-05T15:50:38Z
dc.date.issued2019-10-30
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/35360
dc.description.abstractAs a generation of fuzzy set, the notion of complex fuzzy set which is an innovative concept is introduced by Ramot, Milo, Friedman and Kandel. The purpose of this article is to apply complex fuzzy set to BCK/BCI-algebras. The notions of a complex subalgebra and a complex left (right) reduced ideal in a BCK/BCI- algebra are introduced, and related properties are investigated. Characterizations of a complex subalgebra are provided, and the homomorphic image (preimage) of a complex subalgebra and a complex left (right) reduced ideal.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectcomplex t-normen
dc.subjectmin-complex t-normen
dc.subjectcomplex subalgebraen
dc.subjectcomplex left (right) reduced idealen
dc.subjectcomplex characteristic functionen
dc.titleComplex Fuzzy Sets with Application in BCK/BCI-Algebrasen
dc.typeOther
dc.page.number173-185
dc.contributor.authorAffiliationJun, Young Bae - Gyeongsang National University, Department of Mathematics Educationen
dc.contributor.authorAffiliationXin, Xiao Long - Northwest University, China, School of Mathematicsen
dc.identifier.eissn2449-836X
dc.referencesD. Ramot, R. Milo, M. Friedman and A. Kandel, Complex fuzzy sets, IEEE Transactions on Fuzzy Systems 10(2), (2002), pp. 171–186.en
dc.referencesD.E. Tamir and A. Kandel, Axiomatic theory of complex fuzzy logic and complex fuzzy classes, International Journal of Computers Communications & Control, 6 (2011), no. 3, pp. 562–576.en
dc.referencesY. Al-Qudah and N. Hassan, Operations on complex multi-fuzzy sets, Journal of Intelligent and Fuzzy Systems 33 (2017), pp. 1527–1540. DOI:10.3233/JIFS-162428en
dc.referencesY. S. Huang, BCI-algebra, Science Press, China (2006).en
dc.referencesJ. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co., Seoul (1994).en
dc.referencesA. Azam, B. Fisher and M. Khan, Common fixed point theorems in complex valued metric spaces, Numerical Functional Analysis and Optimization 32(3), (2011), pp. 243–253.en
dc.contributor.authorEmailJun, Young Bae - skywine@gmail.com
dc.contributor.authorEmailXin, Xiao Long - xlxin@nwu.edu.cn
dc.identifier.doi10.18778/0138-0680.48.3.02
dc.relation.volume48


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0