dc.contributor.author | Tomova, Natalya | |
dc.date.accessioned | 2021-05-05T13:58:33Z | |
dc.date.available | 2021-05-05T13:58:33Z | |
dc.date.issued | 2020-11-13 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/35351 | |
dc.description.abstract | In this paper, we consider the class of four-valued literal-paraconsistent-paracomplete logics constructed by combination of isomorphs of classical logic CPC. These logics form a 10-element upper semi-lattice with respect to the functional embeddinig one logic into another. The mechanism of variation of paraconsistency and paracompleteness properties in logics is demonstrated on the example of two four-element lattices included in the upper semi-lattice. Functional properties and sets of tautologies of corresponding literal-paraconsistent-paracomplete matrices are investigated. Among the considered matrices there are the matrix of Puga and da Costa's logic V and the matrix of paranormal logic P1I1, which is the part of a sequence of paranormal matrices proposed by V. Fernández. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;1 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | Four-valued logics | en |
dc.subject | paraconsistent logics | en |
dc.subject | paracomplete logics | en |
dc.subject | isomorphisms | en |
dc.subject | literal-paraconsistent-paracomplete logics | en |
dc.subject | semi-lattice of logics | en |
dc.title | A Semi-lattice of Four-valued Literal-paraconsistent-paracomplete Logics | en |
dc.type | Other | |
dc.page.number | 35-53 | |
dc.contributor.authorAffiliation | Russian Academy of Sciences, Institute of Philosophy, Goncharnaya 12/1, 109240 Moscow, Russian Federation | en |
dc.identifier.eissn | 2449-836X | |
dc.references | [1] O. Arieli, A. Avron, Four-valued paradefinite logics, Studia Logica, vol. 105(6) (2017), pp. 1087–1122, DOI: https://doi.org/10.1007/s11225-017-9721-4 | en |
dc.references | [2] D. A. Bochvar, V. K. Finn, On many-valued logics admitting formalization of the analysis of antinomies. 1, [in:] Studies in mathematical linguistics, mathematical logic and information languages, Nauka, Moscow (1972), pp. 238–295. | en |
dc.references | [3] L. Bolc, P. Borowik, Many-valued Logics: 1: Theoretical Foundations , Springer-Verlag Berlin Heidelberg (1992). | en |
dc.references | [4] J. Ciuciura, A weakly-intuitionistic logic I1, Logical Investigations, vol. 21(2) (2015), pp. 53–60. | en |
dc.references | [5] L. Y. Devyatkin, On a continual class of four-valued maximally paranormal logics, Logical Investigations, vol. 24(2) (2018), pp. 85–91, DOI: https://doi.org/10.21146/2074-1472-2018-24-2-85-91 , in Russian. | en |
dc.references | [6] V. L. Fernández, Semântica de Sociedades para Lógicas n-valentes, Master's thesis, Campinas: IFCH-UNICAMP (2001). | en |
dc.references | [7] V. L. Fernández, M. E. Coniglio, Combining valuations with society semantics, Journal of Applied Non-Classical Logics, vol. 13(1) (2003), pp. 21–46, DOI: https://doi.org/10.3166/jancl.13.21-46 | en |
dc.references | [8] S. Jaśkowski, A propositional calculus for inconsistent deductive systems, Studia Logica, vol. 24 (1969), pp. 143–157. | en |
dc.references | [9] A. Karpenko, N. Tomova, Bochvar's three-valued logic and literal paralogics: the lattice and functional equivalence, Logic and Logical Philosophy, vol. 26(2) (2017), pp. 207–235, DOI: https://doi.org/10.12775/LLP.2016.029 | en |
dc.references | [10] A. S. Karpenko, Jaśkowski's criterion and three-valued paraconsistent logics, Logic and Logical Philosophy, vol. 7 (1999), pp. 81–86, DOI: https://doi.org/10.12775/LLP.1999.006 | en |
dc.references | [11] A. S. Karpenko, A maximal paraconsistent logic: The combination of two three-valued isomorphs of classical propositional logic, [in:] D. Batens, C. Mortensen, G. Priest, J.-P. Van Bendegem (eds.), Frontiers of Paraconsistent Logic, Baldock Research Studies Press (2000), pp. 181–187. | en |
dc.references | [12] A. S. Karpenko, N. E. Tomova, Bochvar's three-valued logic and literal paralogics, Institute of Philosophy of Russian Academy of Science, Moscow (2016). | en |
dc.references | [13] R. A. Lewin, I. F. Mikenberg, Literal-paraconsistent and literal-paracomplete matrices, Mathematical Logic Quarterly, vol. 52(5) (2006), pp. 478–493, DOI: https://doi.org/10.1002/malq.200510044 | en |
dc.references | [14] E. Mendelson, Introduction to Mathematical Logic, 4th ed., Chapman & Hall (1997). | en |
dc.references | [15] Y. I. Petrukhin, Deduction Normalization Theorem for Sette's Logic and Its Modifications, Moscow University Mathematics Bulletin, vol. 74(1) (2019), pp. 25–31, DOI: https://doi.org/10.3103/S0027132219010054 | en |
dc.references | [16] V. M. Popov, On the logics related to A. Arruda's system V1, Logic and Logical Philosophy, vol. 7 (1999), pp. 87–90, DOI: https://doi.org/10.12775/LLP.1999.007 | en |
dc.references | [17] G. Priest, K. Tanaka, Z. Weber, Paraconsistent logic (2013), URL: http://plato.stanford.edu/entries/logic-paraconsistent , Stanford Encyclopedia of Philosophy. | en |
dc.references | [18] L. Z. Puga, N. C. A. Da Costa, On the imaginary logic of N. A. Vasiliev, Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 34 (1988), pp. 205–211. | en |
dc.references | [19] A. M. Sette, On propositional calculus P1, Mathematica Japonicae, vol. 18 (1973), pp. 173–180. | en |
dc.references | [20] A. M. Sette, E. H. Alves, On the equivalence between some systems of non-classical logic, Bulletin of the Section of Logic, vol. 25(2) (1973), pp. 68–72. | en |
dc.references | [21] A. M. Sette, W. A. Carnielli, Maximal weakly-intuitionistic logics, Studia Logica, vol. 55(1) (1995), pp. 181–203, DOI: https://doi.org/10.1007/BF01053037 | en |
dc.references | [22] N. E. Tomova, On properties of a class of four-valued papranormal logics, Logical Investigations, vol. 24(1) (2018), pp. 75–89, DOI: https://doi.org/10.21146/2074-1472-2018-24-1-75-89 | en |
dc.references | [23] N. E. Tomova, A. N. Nepeivoda, Functional properties of four-valued paralogics, Logical-Philosophical Studies, vol. 16(1–2) (2018), pp. 130–132. | en |
dc.contributor.authorEmail | natalya-tomova@yandex.ru | |
dc.identifier.doi | 10.18778/0138-0680.2020.24 | |
dc.relation.volume | 50 | |