dc.contributor.author | Maffezioli, Paolo | |
dc.contributor.author | Orlandelli, Eugenio | |
dc.date.accessioned | 2019-10-13T10:26:05Z | |
dc.date.available | 2019-10-13T10:26:05Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/30602 | |
dc.description.abstract | In previous work by Baaz and Iemhoff, a Gentzen calculus for intuitionistic logic with existence predicate is presented that satisfies partial cut elimination and Craig's interpolation property; it is also conjectured that interpolation fails for the implication-free fragment. In this paper an equivalent calculus is introduced that satisfies full cut elimination and allows a direct proof of interpolation via Maehara's lemma. In this way, it is possible to obtain much simpler interpolants and to better understand and (partly) overcome the failure of interpolation for the implication-free fragment. | en_GB |
dc.language.iso | en | en_GB |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | en_GB |
dc.relation.ispartofseries | Bulletin of the Section of Logic; 2 | |
dc.rights | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. | en_GB |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | en_GB |
dc.subject | intuitionistic logic | en_GB |
dc.subject | existence predicate | en_GB |
dc.subject | sequent calculi | en_GB |
dc.subject | cut elimination | en_GB |
dc.subject | interpolation | en_GB |
dc.subject | Maehara's lemma | en_GB |
dc.title | Full Cut Elimination and Interpolation for Intuitionistic Logic with Existence Predicate | en_GB |
dc.type | Article | en_GB |
dc.page.number | 137-158 | |
dc.contributor.authorAffiliation | Departamet de Filosofia, Universitat de Barcelona, Barcelona, Spain | |
dc.contributor.authorAffiliation | Dipartimento di Filosofia e Comunicazione, Universitá di Bologna, Bologna, Italy | |
dc.identifier.eissn | 2449-836X | |
dc.references | M. Baaz and R. Iemhoff. On interpolation in existence logics, Logic for Programming, Articial Intelligence, and Reasoning ed. by G. Sutcliffe and A. Voronkov, vol. 3835 of Lecture Notes in Computer Science. Springer, 2005, pp. 697–711. https://doi.org/10.1007/11591191_48 | en_GB |
dc.references | M. Baaz and R. Iemhoff, Gentzen calculi for the existence predicate, Studia Logica, vol. 82, no. 1 (2006), pp. 7–23. https://doi.org/10.1007/s11225-006-6603-6 | en_GB |
dc.references | M. Beeson, Foundations of Constructive Mathematics. Springer, 1985. https://doi.org/10.1007/978-3-642-68952-9 | en_GB |
dc.references | G. Gherardi, P. Maffezioli, and E. Orlandelli, Interpolation in extensions of first-order logic, Studia Logica (2019), pp. 1–30. (published online). https://doi.org/10.1007/s11225-019-09867-0 | en_GB |
dc.references | S. Maehara, On the interpolation theorem of Craig. Suugaku, vol. 12 (1960), pp. 235–237. (in Japanese). | en_GB |
dc.references | S. Negri, Contraction-free sequent calculi for geometric theories with an application to Barr's theorem, Archive for Mathematical Logic, vol. 42, no. 4 (2003), pp. 389–401. https://doi.org/10.1007/s001530100124 | en_GB |
dc.references | S. Negri, Proof analysis in modal logic, Journal of Philosophical Logic, vol. 34, no. (5-6) (2005), pp. 507–544. https://doi.org/10.1007/s10992-005-2267-3 | en_GB |
dc.references | S. Negri and J. von Plato, Structural Proof Theory. Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511527340 | en_GB |
dc.references | D. Scott, Identity and existence in intuitionistic logic. In M. Fourman, C. Mulvey, and D. Scott, editors, Application of Shaves. Springer, 1979, pp. 660–696. https://doi.org/10.1007/BFb0061839 | en_GB |
dc.references | A.S. Troelstra and H. Schwichtenberg, Basic Proof Theory. Cambridge University Press, 2nd edition, 2000. https://doi.org/10.1017/CBO9781139168717 | en_GB |
dc.contributor.authorEmail | paolo.maffezioli@ub.edu | |
dc.contributor.authorEmail | eugenio.orlandelli@unibo.it | |
dc.identifier.doi | 10.18778/0138-0680.48.2.04 | |
dc.relation.volume | 48 | en_GB |
dc.subject.jel | logic | en_GB |