Pokaż uproszczony rekord

dc.contributor.authorMaffezioli, Paolo
dc.contributor.authorOrlandelli, Eugenio
dc.date.accessioned2019-10-13T10:26:05Z
dc.date.available2019-10-13T10:26:05Z
dc.date.issued2019
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/30602
dc.description.abstractIn previous work by Baaz and Iemhoff, a Gentzen calculus for intuitionistic logic with existence predicate is presented that satisfies partial cut elimination and Craig's interpolation property; it is also conjectured that interpolation fails for the implication-free fragment. In this paper an equivalent calculus is introduced that satisfies full cut elimination and allows a direct proof of interpolation via Maehara's lemma. In this way, it is possible to obtain much simpler interpolants and to better understand and (partly) overcome the failure of interpolation for the implication-free fragment.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic; 2
dc.rightsThis work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.en_GB
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0en_GB
dc.subjectintuitionistic logicen_GB
dc.subjectexistence predicateen_GB
dc.subjectsequent calculien_GB
dc.subjectcut eliminationen_GB
dc.subjectinterpolationen_GB
dc.subjectMaehara's lemmaen_GB
dc.titleFull Cut Elimination and Interpolation for Intuitionistic Logic with Existence Predicateen_GB
dc.typeArticleen_GB
dc.page.number137-158
dc.contributor.authorAffiliationDepartamet de Filosofia, Universitat de Barcelona, Barcelona, Spain
dc.contributor.authorAffiliationDipartimento di Filosofia e Comunicazione, Universitá di Bologna, Bologna, Italy
dc.identifier.eissn2449-836X
dc.referencesM. Baaz and R. Iemhoff. On interpolation in existence logics, Logic for Programming, Articial Intelligence, and Reasoning ed. by G. Sutcliffe and A. Voronkov, vol. 3835 of Lecture Notes in Computer Science. Springer, 2005, pp. 697–711. https://doi.org/10.1007/11591191_48en_GB
dc.referencesM. Baaz and R. Iemhoff, Gentzen calculi for the existence predicate, Studia Logica, vol. 82, no. 1 (2006), pp. 7–23. https://doi.org/10.1007/s11225-006-6603-6en_GB
dc.referencesM. Beeson, Foundations of Constructive Mathematics. Springer, 1985. https://doi.org/10.1007/978-3-642-68952-9en_GB
dc.referencesG. Gherardi, P. Maffezioli, and E. Orlandelli, Interpolation in extensions of first-order logic, Studia Logica (2019), pp. 1–30. (published online). https://doi.org/10.1007/s11225-019-09867-0en_GB
dc.referencesS. Maehara, On the interpolation theorem of Craig. Suugaku, vol. 12 (1960), pp. 235–237. (in Japanese).en_GB
dc.referencesS. Negri, Contraction-free sequent calculi for geometric theories with an application to Barr's theorem, Archive for Mathematical Logic, vol. 42, no. 4 (2003), pp. 389–401. https://doi.org/10.1007/s001530100124en_GB
dc.referencesS. Negri, Proof analysis in modal logic, Journal of Philosophical Logic, vol. 34, no. (5-6) (2005), pp. 507–544. https://doi.org/10.1007/s10992-005-2267-3en_GB
dc.referencesS. Negri and J. von Plato, Structural Proof Theory. Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511527340en_GB
dc.referencesD. Scott, Identity and existence in intuitionistic logic. In M. Fourman, C. Mulvey, and D. Scott, editors, Application of Shaves. Springer, 1979, pp. 660–696. https://doi.org/10.1007/BFb0061839en_GB
dc.referencesA.S. Troelstra and H. Schwichtenberg, Basic Proof Theory. Cambridge University Press, 2nd edition, 2000. https://doi.org/10.1017/CBO9781139168717en_GB
dc.contributor.authorEmailpaolo.maffezioli@ub.edu
dc.contributor.authorEmaileugenio.orlandelli@unibo.it
dc.identifier.doi10.18778/0138-0680.48.2.04
dc.relation.volume48en_GB
dc.subject.jellogicen_GB


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.