dc.contributor.author | Kurbis, Nils | |
dc.date.accessioned | 2019-10-13T10:26:03Z | |
dc.date.available | 2019-10-13T10:26:03Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/30599 | |
dc.description.abstract | This paper presents a way of formalising definite descriptions with a binary quantifier ℩, where ℩x[F, G] is read as `The F is G'. Introduction and elimination rules for ℩ in a system of intuitionist negative free logic are formulated. Procedures for removing maximal formulas of the form ℩x[F, G] are given, and it is shown that deductions in the system can be brought into normal form. | en_GB |
dc.language.iso | en | en_GB |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | en_GB |
dc.relation.ispartofseries | Bulletin of the Section of Logic; 2 | |
dc.rights | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. | en_GB |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | en_GB |
dc.subject | definite descriptions | en_GB |
dc.subject | negative intuitionist free logic | en_GB |
dc.subject | natural deduction | en_GB |
dc.subject | normalization | en_GB |
dc.title | A Binary Quantifier for Definite Descriptions in Intuitionist Negative Free Logic: Natural Deduction and Normalisation | en_GB |
dc.type | Article | en_GB |
dc.page.number | 81-97 | |
dc.contributor.authorAffiliation | Department of Philosophy, University College London, London, UK | |
dc.identifier.eissn | 2449-836X | |
dc.references | D. Bostock, Intermediate Logic, Oxford: Clarendon Press, 1997. | en_GB |
dc.references | M. Dummett, Frege. Philosophy of Language, 2 ed., Cambridge: Harvard University Press, 1981. | en_GB |
dc.references | A. Indrzejczak, Cut-Free Modal Theory of Definite Descriptions, [in:] Advances in Modal Logic, G. Bezhanishvili, G. D'Agostino, G. Metcalfe and T. Studer (eds.), vol. 12, pp. 359–378, London: College Publications, 2018. | en_GB |
dc.references | A. Indrzejczak, Fregean Description Theory in Proof-Theoretical Setting, Logic and Logical Philosophy, vol. 28, no. 1 (2018), pp. 137–155. http://dx.doi.org/10.12775/LLP.2018.008 | en_GB |
dc.references | D. Prawitz, Natural Deduction: A Proof-Theoretical Study, Stockholm, Göteborg, Uppsala: Almqvist and Wiksell, 1965. | en_GB |
dc.references | D. Scott, Identity and Existence in Intuitionistic Logic, [in:] Applications of Sheaves, Michael Fourman, Christopher Mulvery, Dana Scott (eds.), Berlin, Heidelberg, New York: Springer, 1979. https://doi.org/10.1007/BFb0061839 | en_GB |
dc.references | N. Tennant, A General Theory of Abstraction Operators, The Philosophical Quarterly, vol. 54, no. 214 (2004), pp. 105–133. https://doi.org/10.1111/j.0031-8094.2004.00344.x | en_GB |
dc.references | N. Tennant, Natural Logic, Edinburgh: Edinburgh University Press, 1978. | en_GB |
dc.references | A. S. Troelstra and H. Schwichtenberg, Basic Proof Theory, Cambridge University Press, 2 ed., 2000. https://doi.org/10.1017/CBO9781139168717 | en_GB |
dc.contributor.authorEmail | n.kurbis@ucl.ac.uk | |
dc.identifier.doi | 10.18778/0138-0680.48.2.01 | |
dc.relation.volume | 48 | en_GB |