dc.contributor.author | Stronkowski, Michał M. | |
dc.date.accessioned | 2019-01-14T14:54:40Z | |
dc.date.available | 2019-01-14T14:54:40Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/26417 | |
dc.description.abstract | We provide simple algebraic proofs of two important facts, due to Zakharyaschev and Esakia, about Grzegorczyk algebras. | en_GB |
dc.description.sponsorship | The work was supported by the Polish National Science Centre grant no. DEC- 2011/01/D/ST1/06136. | en_GB |
dc.language.iso | en | en_GB |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | en_GB |
dc.relation.ispartofseries | Bulletin of the Section of Logic;2 | |
dc.rights | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. | en_GB |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | en_GB |
dc.subject | Grzegorczyk algebras | en_GB |
dc.subject | free Boolean extensions of Heyting algebras | en_GB |
dc.subject | stable homomorphisms | en_GB |
dc.title | Grzegorczyk Algebras Revisited | en_GB |
dc.type | Article | en_GB |
dc.page.number | [129]-139 | |
dc.contributor.authorAffiliation | Faculty of Mathematics and Information Science, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland | |
dc.identifier.eissn | 2449-836X | |
dc.references | G. Bezhanishvili and N. Bezhanishvili, An algebraic approach to canonical formulas: modal case, Studia Logica 99 (2011), pp. 93–125. | en_GB |
dc.references | G. Bezhanishvili, N. Bezhanishvili and R. Iemhoff, Stable canonical rules, Journal of Symbolic Logic 81 (2016), pp. 284–315. | en_GB |
dc.references | W. J. Blok, Varieties of interior algebras, PhD thesis, University of Amsterdam (1976), URL=http://www.illc.uva.nl/Research/Dissertations/HDS-01-Wim_Blok.text.pdf. | en_GB |
dc.references | W. J. Blok and Ph. Dwinger, Equational classes of closure algebras. I, Indagationes Mathematicae 37 (1975), pp. 189–198. | en_GB |
dc.references | A. Chagrov and M. Zakharyaschev, Modal logic, Oxford University Press, New York, 1997. | en_GB |
dc.references | A. Chagrov and M. Zakharyashchev, Modal companions of intermediate propositional logics, Studia Logica 51 (1992), pp. 49–82. | en_GB |
dc.references | L. L. Esakia, On the theory of modal and superintuitionistic systems, [in:] V. A. Smirnov (ed.), Logical inference, Nauka, Moscow (1979), pp. 147–172 (in Russian). | en_GB |
dc.references | L. L. Esakia, On the variety of Grzegorczyk algebras, [in:] Studies in nonclassical logics and set theory, Nauka, Moscow (1979), pp. 257–287 (in Russian). | en_GB |
dc.references | S. Ghilardi, Continuity, freeness, and filtrations, Journal of Applied Non-Classical Logics 20 (2010), pp. 193–217. | en_GB |
dc.references | S. Givant and P. Halmos, Introduction to Boolean algebras, Springer, New York, 2009. | en_GB |
dc.references | A. Grzegorczyk, Some relational systems and the associated topological spaces, Fundamenta Mathematicae 60 (1967), pp. 223–231. | en_GB |
dc.references | D. C. Makinson, On the number of ultrafilters of an infinite boolean algebra, Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 15 (1969), pp. 121–122. | en_GB |
dc.references | L. L. Maksimova and V. V. Rybakov, The lattice of normal modal logics, Algebra and Logic 13 (1974), pp. 105–122. | en_GB |
dc.references | J. C. C. McKinsey and A. Tarski, On closed elements in closure algebras, Annals of Mathematics 47 (1946), pp. 122–162. | en_GB |
dc.references | A. Y. Muravitsky, The embedding theorem: its further developments and consequences. Part I, Notre Dame Journal of Formal Logic 47 (2006),pp. 525–540. | en_GB |
dc.references | M. M. Stronkowski, Free Boolean extensions of Heyting algebras, Advances in Modal Logic, Budapest, 2016, pp. 122–126 (Extended abstract). | en_GB |
dc.references | M. M. Stronkowski, On the Blok-Esakia theorem for universal classes, arXiv:1810.09286. | en_GB |
dc.references | F. Wolter and M. Zakharyaschev, On the Blok-Esakia theorem, [in:] G. Bezhanishvili (ed.), Leo Esakia on Duality in Modal and Intuitionistic Logics, Springer Netherlands, Dordrecht (2014), pp. 99–118. | en_GB |
dc.references | M. Zakharyaschev, Canonical formulas for K4. Part I. Basic results Journal of Symbolic Logic 57 (1992), pp. 1377–1402. | en_GB |
dc.contributor.authorEmail | m.stronkowski@mini.pw.edu.pl | |
dc.identifier.doi | 10.18778/0138-0680.47.2.05 | |
dc.relation.volume | 47 | en_GB |
dc.subject.jel | 03G25 | |
dc.subject.jel | 06E25 | |
dc.subject.jel | 06D20 | |
dc.subject.jel | 03B45 | |