dc.contributor.author | Shoar, Sadegh Khosravi | |
dc.contributor.author | Borzooei, Rajab Ali | |
dc.contributor.author | Moradian, R. | |
dc.contributor.author | Radfar, Atefe | |
dc.date.accessioned | 2019-01-14T14:03:04Z | |
dc.date.available | 2019-01-14T14:03:04Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/26410 | |
dc.description.abstract | In this paper, we define the notion of PC-lattice, as a generalization of finite positive implicative BCK-algebras with condition (S) and bounded commutative BCK-algebras. We investiate some results for Pc-lattices being a new class of BCK-lattices. Specially, we prove that any Boolean lattice is a PC-lattice and we show that if X is a PC-lattice with condition S, then X is an involutory BCK-algebra if and only if X is a commutative BCK-algebra. Finally, we prove that any PC-lattice with condition (S) is a distributive BCK-algebra. | en_GB |
dc.language.iso | en | en_GB |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | en_GB |
dc.relation.ispartofseries | Bulletin of the Section of Logic;1 | |
dc.rights | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. | en_GB |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0 | en_GB |
dc.subject | PC-lattice | en_GB |
dc.subject | BCK-lattice | en_GB |
dc.subject | Involutory BCK-algebras | en_GB |
dc.subject | Bounded commutative BCK-algebras | en_GB |
dc.title | PC-lattices: A Class of Bounded BCK-algebras | en_GB |
dc.type | Article | en_GB |
dc.page.number | 33-44 | |
dc.contributor.authorAffiliation | Department of Mathematics, Fasa University, Fasa, Iran | |
dc.contributor.authorAffiliation | Department of Mathematics, Shahid Beheshti University, Tehran, Iran | |
dc.contributor.authorAffiliation | Department of mathematics Farhangian University, Tehran, Iran | |
dc.contributor.authorAffiliation | Payame Noor University, p. o. box. 19395-3697, Tehran, Iran | |
dc.identifier.eissn | 2449-836X | |
dc.references | C. Bărbăcioru, Positive implicative BCK-algebras, Mathematica Japonica 36 (1967), pp. 11–59. | en_GB |
dc.references | R. A. Borzooei, S. Khosravi Shoar, Implication Algebras are Equivalent to the Dual Implicative BCK-algebras, Scientiae Mathematicae Japonicae 633 (2006), pp. 429–431. | en_GB |
dc.references | R. A. Borzooei, S. Khosravi Shoar, R. Ameri, Some new filters in MTL-algebras, Fuzzy Sets and Systems 187(1) (2012), pp. 92–102. | en_GB |
dc.references | B. A. Davey, H. A. Priestley, Introduction to Lattices and Order, Cambridge University Press, 1990, 2002. | en_GB |
dc.references | G. Grätzer, General Lattice Theory, Academic Press, 1978. | en_GB |
dc.references | Y. Huang, BCI-algebras, Science Press, 2006. | en_GB |
dc.references | Y. Huang, On involutory BCK-algebras, Soochow Journal of Mathematics 32(1) (2006), pp. 51–57. | en_GB |
dc.references | Y. Imai, K. Iséki, On axioms systems of propositional calculi XIV, Proceedings of the Japan Academy 42 (1966), pp. 19–22. | en_GB |
dc.references | K. Iséki, BCK-algebras with condition (S), Mathematica Japonica 24 (1979), pp. 107–119. | en_GB |
dc.references | K. lséki, On positive implicative BCK-algebras with condition (S), Mathematica Japonica 24 (1979), pp. 107–119. | en_GB |
dc.references | K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica 23 (1978), pp. 1–26. | en_GB |
dc.references | J. Meng and Y. B. Jun, BCK-Algebras, Kyung Moon Sa Co, Seoul, Korea, 1994. | en_GB |
dc.references | S. Tanaka, A new class of algebras, Mathematics Seminar Notes 3 (1975), pp. 37–43. | en_GB |
dc.references | S. Tanaka, On ^-commutative algebras, Mathematics Seminar Notes 3 (1975), pp. 59–64. | en_GB |
dc.contributor.authorEmail | khosravi.shoar@fasau.ac.ir | |
dc.contributor.authorEmail | borzooei@sbu.ac.ir | |
dc.contributor.authorEmail | Rmoradian2017@gmail.com | |
dc.contributor.authorEmail | radfar@pnu.ac.ir | |
dc.identifier.doi | 10.18778/0138-0680.47.1.03 | |
dc.relation.volume | 47 | en_GB |
dc.subject.msc | 06F35 | |
dc.subject.msc | 03G25 | |