Pokaż uproszczony rekord

dc.contributor.authorDoszyń, Mariusz
dc.date.accessioned2018-10-08T13:33:24Z
dc.date.available2018-10-08T13:33:24Z
dc.date.issued2018
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/25931
dc.description.abstractThe main aim of the article is to present a new forecasting technique, applicable in case of intermittent demand. To present properties of this new technique, the accuracy of the predictions generated by the Croston’s method and by the author’s method (based on stochastic simulation) was analyzed. For comparison, methods such as moving average and simple exponential smoothing are as well used as a reference. Also the SBA method, a modification of Croston’s method, is applied. Croston’s method is an extension of adaptive methods. It separates the interval between the (non‑zero) sales and the sales level. Its purpose is to better forecast intermittent (sporadic) demand. The second prognostic method is the author’s proposal which relies on two stages. In the first stage, based on stochastic simulation, it determines if an event (sale) occurs in a given period. In the second stage, the sales level is estimated (if the previous stage shows that the sales will occur). Due to the strong asymmetry of the sales, the sales level is determined on the basis of the corresponding quantiles. The basis for forecasting are weekly sales series of about fourteen thousand products (real data). The analyzed time series can be defined as atypical, which is manifested by a small number of non‑zero observations (high number of zeros), high volatility and randomness (randomness tests indicate white noise). Forecast error measures are used to characterize both the bias and the efficiency. The forecast error measures will be characterized so that they can be applied to a time series with a large number of zeros (including the author’s forecast error measure proposal). Forecasts were evaluated with respect to the distributions of four ex post errors, such as mean error (ME), mean absolute deviation (MAD), mean absolute scaled error (MASE) and the author’s proposal (error D). The proposed technique, based on stochastic simulation, seems to be the least biased and most efficient. The Croston’s method gives positively biased predictions with rather low efficiency. The proposed forecasting technique might support decisions in enterprises facing the problem of forecasting intermittent demand. The more accurate forecasts could increase the quality of customer service and optimize the inventory level.en_GB
dc.description.abstractGłównym celem artykułu jest przedstawienie nowej techniki prognozowania popytu nietypowego (sporadycznego). Aby zaprezentować właściwości proponowanej techniki, przeanalizowano dokładność prognoz generowanych metodą Crostona i metodą autora (opartą na symulacji stochastycznej). Do porównań przyjęto również takie metody, jak średnia ruchoma i proste wygła­dzanie wykładnicze. Zastosowano również metodę SBA, która jest modyfikacją metody Crostona. Metoda Crostona jest rozszerzeniem metod adaptacyjnych. Oddzielnie analizowane są odstępy między niezerową sprzedażą oraz poziom sprzedaży. Jej celem jest lepsze prognozowanie nietypowe­go (sporadycznego) popytu. Drugą metodą prognostyczną jest propozycja autora, która opiera się na dwóch etapach. W pierwszym, w oparciu o symulację stochastyczną, określa się, czy zdarzenie (sprzedaż) w danym okresie wystąpi. W drugim etapie szacowany jest poziom sprzedaży (jeśli po­przedni etap pokazuje, że nastąpi sprzedaż). Ze względu na silną asymetrię sprzedaży jej poziom ustalany jest na podstawie odpowiednich kwantyli. Podstawą prognozowania są cotygodniowe serie sprzedaży około czternastu tysięcy produktów (dane rzeczywiste). Analizowane szeregi czasowe można zdefiniować jako nietypowe, co przejawia się niewielką liczbą niezerowych obserwacji (duża liczba zer), dużą zmiennością i losowością (testy losowości wskazują na biały szum). Stosowane miary błędów prognoz charakteryzują zarówno obciążenie, jak i efektywność prognoz. Błędy prognoz zostaną dostosowane do szeregów czasowych z dużą liczbą zer (w tym autorska propozycja miary błędu prognozy). Prognozy zweryfikowano ze względu na rozkłady czterech błędów ex post: błędu średniego (ME), średniego odchylenia bezwzględnego (MAD), średniego absolutnego błędu skalo­wanego (MASE) i błędu D (propozycja autora). Metoda prognozowania oparta na symulacji stocha­stycznej jest najmniej obciążona i najbardziej efektywna. Metoda Crostona daje dodatnio obciążone prognozy o raczej niskiej efektywności. Proponowana technika prognozowania może wspierać de­cyzje podejmowane w przedsiębiorstwach, które borykają się z problemem prognozowania spora­dycznego popytu. Bardziej dokładne prognozy mogą zwiększyć poziom obsługi klienta i zoptyma­lizować poziom zapasów.pl_PL
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;338; 338
dc.subjectintermittent demand forecastingen_GB
dc.subjectCroston’s methoden_GB
dc.subjectstochastic simulationen_GB
dc.subjectforecast error measures of intermittent demanden_GB
dc.subjectprognozowanie popytu nietypowegopl_PL
dc.subjectmetoda Crostonapl_PL
dc.subjectsymulacja stochastycznapl_PL
dc.subjectbłędy prognozpl_PL
dc.titleNew Forecasting Technique for Intermittent Demand, Based on Stochastic Simulation. An Alternative to Croston’s Methoden_GB
dc.title.alternativeNowa technika prognozowania popytu nietypowego na podstawie symulacji stochastycznej. Alternatywa dla metody Crostonapl_PL
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2018; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2018en_GB
dc.page.number41-55
dc.contributor.authorAffiliationUniversity of Szczecin, Faculty of Economics and Management, Institute of Econometrics and Statistics
dc.identifier.eissn2353-7663
dc.referencesBoylan J.E., Syntetos A.A. (2007), The accuracy of a Modified Croston procedure, “International Journal of Production Economics”, vol. 107, pp. 511–517.pl_PL
dc.referencesCroston J.D. (1972), Forecasting and stock control for intermittent demands, “Operational Research Quarterly” 1970–1977, vol. 23(3), pp. 289–303.pl_PL
dc.referencesDoszyń M. (2017), Forecasting of Randomly Distributed Zero–inflated Time Series, “Folia Oeconomica Stetinensia”, vol. 17(1), pp. 7–19.pl_PL
dc.referencesHyndman R.J., Koehler A.B. (2006), Another look at measures of forecast accuracy, “International Journal of Forecasting”, vol. 22(4), pp. 679–688.pl_PL
dc.referencesShukur G., Doszyń M., Dmytrów K. (2017), Comparison of the Effectiveness of Forecasts Obtained by Means of Selected Probability Functions with Respect to Forecast Error Distributions, “Communications in Statistics. Simulation and Computation”, vol. 46, no. 5, pp. 3667–3679, http://dx.doi.org/10.1080/03610918.2015.1100734.pl_PL
dc.referencesSyntetos A.A. (2001), Forecasting of intermittent demand, A Thesis submitted for the degree of Doctor of Philosophy, Business School, Buckinghamshire Chilterns University College, Brunel University, London.pl_PL
dc.referencesSyntetos A.A., Boylan J.E. (2005), The accuracy of intermittent demand estimates, “International Journal of Forecasting”, vol. 21(2), pp. 303–314.pl_PL
dc.referencesTeunter R.H., Syntetos A.A., Babai M.Z. (2011), Intermittent demand: Linking forecasting to inventory obsolescence, “European Journal of Operational Research”, vol. 214, pp. 606–615.pl_PL
dc.referencesXu Q., Wang N., Shi H. (2012), A Review of Croston’s Method for Intermittent Demand Forecasting, 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2012).pl_PL
dc.contributor.authorEmailmariusz.doszyn@gmail.com
dc.identifier.doi10.18778/0208-6018.338.03
dc.relation.volume5en_GB
dc.subject.jelC53
dc.subject.jelE27
dc.subject.jelL81


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord